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1 Proof of Convergence Rate of ORDA

Theorem 1. For ORDA, if we require ¢ > 0 and ¢ > 0 when i = 0, then for any t > 0:
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is a convex combination of y; and z; and z; = z; when . = 0. Taking the expectation on both sides
of Eq.(1):
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We first state a basic property for Bregman distance functions in the following Proposition. This
proposition generalizes Lemma 1 in [4] by extending one distance function to a sequence of func-
tions.

Proposition 1. Given any proper Isc convex function () and a sequence of {z;}'_, with each
zi € X, if zp = argmingcy {w(z) + ZZ:O 0V (x, z,)}, where {n; > 0}._, is a sequence of
parameters, thenVx € X:
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Proof of Proposition 1. For a Bregman distance function V (x, y), let V1V (z, y) denote the gradient
of V (-, y) at the point x. It is easy to show that:

V(z,y) =V(z,y) +(ViV(z,y),z — 2z) + V(x, 2), Va,y,zeX,

which further implies that:
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Since z; is the minimizer of the convex function 4 (z) + Y>'_ 7;V (x, 2;), it is known that there
exists a subgradient g of ¢ at z (g € 9¢(z4)) such that:
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Using the above two relations and the definition of subgradient (¢)(z) > ¥(z4) + (g, @ — 24 ) for
all z € X'), we conclude that:
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To better present the proof of Theorem 1, we denote G(y:, &) by G(y:) and define:
At = Gye) = f'(ye) = Glye, &) — £/ () (7

We first show some basic properties A;. Let ;) denote the collection of i.i.d. random vectors

i ti_g. Since both random vectors y; and z; are functions of £; _1; and are independent of {; }:",,
t_,- Since both rand d functi f £[;1) and are independ f N,
we have that for any ¢ > 1 and any «, 3
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Proof of Theorem 1. With our choice of 6, 14, 4, it is easy to show (see [5]) that:
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We further define 97111,71 = 0. We first bound the objective value ¢(z¢41) by:
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We bound the terms C'; and C respectively. Let Z; 11 be the convex combination of x; and z;1:
Zip1 = (1 —0p)xe + Orze 4.
Then we have Z;41 — yr = 0¢(2141 — 2t), where
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which is a convex combination of y, and z;. By the fact that x; 1 is the minimizer of C; and utilizing
. _ 2 ~ ~
the relationship V (z¢11,y:) < M and Zy1 — yr = 0(2041 — 21):
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By the convexity of || - |2 and the fact that ||z — y||? < V(z,y) forany z,y € X:
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We plug Eq.(14) back into RHS of Eq.(13) and substitute Z;11 with (1 — 6;)x; + 6;2411. By the
convexity of h(+):
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Now we bound Cj5 using Proposition 1. Utilizing the first equality in Eq. (11), we can re-write z; as
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Furthermore, we define 1;(x) := Eﬁ;é f(yi)Hm_”"’G(y;‘j)/>+h(m)+“v(m’y1‘) and apply Proposition 1
with x = 2z441:
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We can bound the last term in C'3 by Eq.(17). In particular, according to Eq.(11):
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With the above inequality, we immediately obtain an upper bound for C5. Therefore, by the defini-
tion of 1 (-), we bound the term C by:

C1 < (1=0) () +0:vs (Vig1(2e41) — Ye(2e) + eV (2041, o) — 7V (2¢, @0)) + 04 (Y — 22, ﬁt8>)

To bound (', since the parameter ¢ > 0 whenever . = 0, we always have THT,? + 1 — L > 0. Using
a simple inequality: —$x? + fr < % (v > 0), with o« = TITL;" + 2 — L, 3 = ||A¢]|+ + M and
Kk = ||zt+1 — y¢||, we have:
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By summing up the upper bound for C; in Eq.(18) and the bound for C5 in Eq.(19), we obtain an
upper bound for ¢(z;41) according to Eq.(12). Utilizing the second relation in Eq. (11), we build
up the following recursive inequality:

d(ze41) P(zt)
< _ _
b S G T (Vi1 (ze41) — Yul2e) + 71V (2041, w0) — 7V (21, 7))
Agl« + M)? —Z,A
n (I L| + M) +(yt 2 t>§
2($+%ﬁ—9tL)yt Ve
< f(%o) + Yep1(zer1) — Yo(20) + 7V (2e41, o) — ¥V (2, @)

(1Al + M) (g — 2, A
+Z ([Ail+ + M) +Z (yi — Zi, Ay)
i—0 2 (T‘; + 7% gzL) 17 i=0 Vi
t t
A M)? i — Zi, A
= Yit1(ze+1) + 7V (ze41, 20) + Z ([4ill. + M) + Mv(zo)
o 2 (7_#77 + L'h — 0, L) o %3
= 0, V(ZQ,.T()) = 0, ’(/J()(Zo) =0. Using

the fact that 2,1y = argmin_ y {¥441(x) + 741V (z,20)} and ¢ < 4441, Eq.(20) further implies
that:

where the last inequality is obtained by the fact that ;- 1
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Multiplying by 6,14 on both sides of Eq.(21), we obtain the result in Eq.(1). From the properties of
A; in Eq.(8)-(10), we conclude that for all i, E(z* —2;, A;) = 0and E(||A; |« +M)? < 202 +2M?2.
By taking the expectation on both sides of Eq.(1) and using the aforementioned properties for A;,
we obtain the result in Eq.(3). O
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Corollary 1. For convex f(x) with i = 0 (or equivalently n = 0), by setting ¢ = 3V (e o) and

I' = L, we obtain:
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Proof. When p = 0, the expected gap in the objective function in Eq.(3) for the last iterate becomes:
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With choice of O = NLH, UN = NLH and Yy 1 = c(N + 2)3/2 + 7L, the first term in Eq.(23) is
bounded by:
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Similarly, the second term in Eq.(23) can be bounded by:
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By summing the above two inequalities, we obtain that:
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We minimize the RHS of Eq.(26) with respect to ¢ and obtain the convergence rate result in Corollary
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Corollary 2. For strongly convex f(x) with i > 0, we set ¢ = 0 and T' = L and obtain that:
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Proof. When p > 0, we set ¢ = 0 and vy, = 7L and then Eq.(3) becomes:
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This gives the result in Eq.(27) in Corollary 1. O

2 High Probability Bounds for ORDA

Theorem 2. We assume that (1) E (exp {||G(z, &) — f'(2)||2/0?}) < exp{l}, Vz € X (ie,
“light-tail” assumption) and (2) there exists a constant D such that ||z* — Z;|| < D for all t. By
setting T' = L in ORDA, for any iteration t and § € (0, 1), we have, with probability at least 1 — §:

P(41) — d(z7)) < €(t, ) (29)
with
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For convex f(x) with p = 0, by setting ¢ = Vo) and T’ = L, we have
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For convex f(x) with it > 0 (or equivalently 1 > 0), by setting c = 0and I’ = L, , we have
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We prove Theorem 2 using the following two lemmas.

Lemma 1 (Lemma 6 in [2]). Let &y, &1, ... be a sequence of i.i.d. random variables and ¢; =
©i(&[q) be deterministic Borel functions of £;) such that:
E(‘Pim[ifl]) =0;



2. There exists a positive deterministic sequence {o;}: E (exp {¢?/0?} |€;_1]) < exp{1}.

Then for any 6 € (0, 1), Prob (Zf:o v > 3111(1/5)(2z N )1/2> <.

Lemma 2 (Lemma 5 in [1]). Under the assumptions in Theorem 2, for any positive and nondecreas-
ing sequence 1);, we have
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holds with probability at most 6 € (0,1).

We note that although Lemma 5 in [1] assumes that n; = n+v/7 + 1, its proof and conclusion remain
valid for any positive nondecreasing sequence {7); }.

Proof of Theorem 2. To simply notations, let 7; = (ﬁ + 9% —6;L). For both convex and

strongly convex f(z), according to our setting of parameters, it is easy to verifty that {n;} is a
positive monotonically increasing sequence. According to Theorem 1:
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Firstly, we analyze the last term C3 using Lemma 1. Let ;(&[;)) := WQA and hence Cs5 =
Oy Zf:o ;. Itis easy to verify that E(¢;|¢;;_1]) = 0 and there exists a sequence ; = 2% such

that:
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where the last inequality holds because ||z* — Z;|| < D and our “light-tail” assumption. By Lemma
1, we conclude that for any § € (0,1),
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Secondly, we bound the term Cs using Lemma 2. Since v; is decreasing in 4, we have
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Since 7); is increasing in ¢ when I' = L, we can directly apply Lemma 2 as follows:
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where the first inequality is from Eq. (34), a + b > max{a,b} and the fact E|A;|?
o%In (IE exp (”A il )) < 0?In(e) = o2 and the second inequality is due to Lemma 2.



Combining Eq.(35) and Eq. (33), by the union bound:
Pr (gi)(xt_H) — d)(x*) >C1+ Dy + D3) < Pr (Cl +Co+C3>Cq1+ Dy + Dg)
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we immediately obtain Eq.(30). The bounds in Eq. (31) and Eq. (32) can be derived by plugging all
the parameters into Eq. (30).

O

3 Proof of Convergence Rate for Multi-stage ORDA

Theorem 3. If we run multi-stage ORDA for K stages with K = log % for any given €, we have
E(¢p(Tk)) — ¢(x*) < € and the total number of iterations is upper bounded by:
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To prove theorem 3, we first state a corollary of Theorem 1.

Corollary 3. For strongly convex f(x), by setting c = 0 and T = A + L in ORDA, we obtain that:

(A+ L)V (z*, z0) N (N +3)(c? + MQ).

Eg(oni) - o) < TEELD s (37)

The proof technique follows the proof in [3]. The main idea is to show that E(¢(Zx)) — ¢(z*) <
Vo2~ F, where 7, is the solution from the k-th stage.

Proof. We show by induction that

E(¢(Tx)) — d(z") < Vo2 . (38)
By the definition of Vo (Vo > ¢(To) — ¢(x*)), this inequality holds for k£ = 0.
Assuming Eq.(38) holds for the (k — 1)-th stage, by the strong convexity of f(x), we have
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According to Corollary 3 and the setting of Ny and 'y, we have
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Therefore, we prove that E[¢(Z,) — ¢(z*)] < Vo2 F for k > 1.



After running K stages of multi-stage ORDA with K = log, (), we have E[¢(Z}) — ¢(z*)]
V27K = €. The total number of iterations from these K stages is upper bounded by:
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