Appendix

Xi Chen

Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña

Tepper School of Business Carnegie Mellon University

{qihangl,jfp}@andrew.cmu.edu

1 Proof of Convergence Rate of ORDA

Theorem 1. For ORDA, if we require $c \ge 0$ and c > 0 when $\mu = 0$, then for any $t \ge 0$:

$$\phi(x_{t+1}) - \phi(x^*) \le \theta_t \nu_t \gamma_{t+1} V(x^*, x_0) + \frac{\theta_t \nu_t}{2} \sum_{i=0}^t \frac{(\|\Delta_i\|_* + M)^2}{\left(\frac{\mu}{\tau \theta_i} + \frac{\theta_i \gamma_i}{\tau} - \theta_i L\right) \nu_i} + \theta_t \nu_t \sum_{i=0}^t \frac{\langle x^* - \widehat{z}_i, \Delta_i \rangle}{\nu_i}, (1)$$

where

$$\widehat{z}_t = \frac{\theta_t \mu}{\mu + \gamma_t \theta_t^2} y_t + \frac{(1 - \theta_t)\mu + \gamma_t \theta_t^2}{\mu + \gamma_t \theta_t^2} z_t, \tag{2}$$

is a convex combination of y_t and z_t and $\hat{z}_t = z_t$ when $\mu = 0$. Taking the expectation on both sides of Eq.(1):

$$\mathbb{E}\phi(x_{t+1}) - \phi(x^*) \le \theta_t \nu_t \gamma_{t+1} V(x^*, x_0) + (\sigma^2 + M^2) \theta_t \nu_t \sum_{i=0}^t \frac{1}{\left(\frac{\mu}{\tau \theta_i} + \frac{\theta_i \gamma_i}{\tau} - \theta_i L\right) \nu_i}.$$
 (3)

We first state a basic property for Bregman distance functions in the following Proposition. This proposition generalizes Lemma 1 in [4] by extending one distance function to a sequence of functions.

Proposition 1. Given any proper lsc convex function $\psi(x)$ and a sequence of $\{z_i\}_{i=0}^t$ with each $z_i \in \mathcal{X}$, if $z_+ = arg\min_{x \in \mathcal{X}} \left\{ \psi(x) + \sum_{i=0}^t \eta_i V(x, z_i) \right\}$, where $\{\eta_i \geq 0\}_{i=0}^t$ is a sequence of parameters, then $\forall x \in \mathcal{X}$:

$$\psi(x) + \sum_{i=0}^{t} \eta_i V(x, z_i) \ge \psi(z_+) + \sum_{i=0}^{t} \eta_i V(z_+, z_i) + \left(\sum_{i=0}^{t} \eta_i\right) V(x, z_+). \tag{4}$$

Proof of Proposition 1. For a Bregman distance function V(x,y), let $\nabla_1 V(x,y)$ denote the gradient of $V(\cdot,y)$ at the point x. It is easy to show that:

$$V(x,y) \equiv V(z,y) + \langle \nabla_1 V(z,y), x - z \rangle + V(x,z), \quad \forall x,y,z \in \mathcal{X},$$

which further implies that:

$$\sum_{i=0}^{t} \eta_i V(x, z_i) = \sum_{i=0}^{t} \eta_i V(z_+, z_i) + \sum_{i=0}^{t} \eta_i \langle \nabla_1 V(z_+, z_i), x - z_+ \rangle + \left(\sum_{i=0}^{t} \eta_i\right) V(x, z_+).$$
 (5)

Since z_+ is the minimizer of the convex function $\psi(x) + \sum_{i=0}^t \eta_i V(x, z_i)$, it is known that there exists a subgradient g of ψ at z_+ ($g \in \partial \psi(z_+)$) such that:

$$\langle g + \sum_{i=0}^{t} \eta_i \nabla_1 V(z_+, z), x - z_+ \rangle \ge 0 \qquad \forall x \in \mathcal{X}.$$
 (6)

Using the above two relations and the definition of subgradient $(\psi(x) \ge \psi(z_+) + \langle g, x - z_+ \rangle$ for all $x \in \mathcal{X}$), we conclude that:

$$\psi(x) + \sum_{i=0}^{t} \eta_{i} V(x, z_{i})$$

$$\geq \psi(z_{+}) + \sum_{i=0}^{t} \eta_{i} V(z_{+}, z_{i}) + \langle g + \sum_{i=0}^{t} \eta_{i} \nabla_{1} V(z_{+}, z_{i}), x - z_{+} \rangle + \left(\sum_{i=0}^{t} \eta_{i}\right) V(x, z_{+})$$

$$\geq \psi(z_{+}) + \sum_{i=0}^{t} \eta_{i} V(z_{+}, z_{i}) + \left(\sum_{i=0}^{t} \eta_{i}\right) V(x, z_{+}).$$

To better present the proof of Theorem 1, we denote $G(y_t, \xi_t)$ by $G(y_t)$ and define:

$$\Delta_t := G(y_t) - f'(y_t) = G(y_t, \xi_t) - f'(y_t) \tag{7}$$

We first show some basic properties Δ_t . Let $\xi_{[t]}$ denote the collection of *i.i.d.* random vectors $\{\xi_i\}_{i=0}^t$. Since both random vectors y_t and z_t are functions of $\xi_{[t-1]}$ and are independent of $\{\xi_i\}_{i=t}^N$, we have that for any $t \geq 1$ and any α, β

$$\mathbb{E}\Delta_t = \mathbb{E}_{\xi_{[t-1]}}[\mathbb{E}_{\xi_t}(\Delta_t|\xi_{[t-1]})] = \mathbb{E}_{\xi_{[t-1]}}0 = 0; \tag{8}$$

$$\mathbb{E}\|\Delta_t\|_*^2 = \mathbb{E}_{\xi_{[t-1]}}[\mathbb{E}_{\xi_t}(\|\Delta_t\|_*^2|\xi_{[t-1]})] \le \mathbb{E}_{\xi_{[t-1]}}\sigma^2 = \sigma^2; \tag{9}$$

$$\mathbb{E}\langle \alpha y_t + \beta z_t, \Delta_t \rangle = \mathbb{E}_{\xi_{[t-1]}}[\langle \alpha y_t + \beta z_t, \mathbb{E}_{\xi_t} \Delta_t \rangle | \xi_{[t-1]}] = \mathbb{E}_{\xi[t-1]}[\langle \alpha y_t + \beta z_t, 0 \rangle | \xi_{[t-1]}] = 0, (10)$$

Proof of Theorem 1. With our choice of θ_t , ν_t , γ_t , it is easy to show (see [5]) that:

$$\sum_{i=0}^{t} \frac{1}{\nu_i} = \frac{1}{\theta_t \nu_t}, \qquad \frac{1-\theta_t}{\theta_t \nu_t} = \frac{1}{\theta_{t-1} \nu_{t-1}}, \qquad \theta_t \le \nu_t.$$
 (11)

We further define $\frac{1}{\theta-1\nu-1}=0$. We first bound the objective value $\phi(x_{t+1})$ by:

$$\phi(x_{t+1}) = f(x_{t+1}) + h(x_{t+1}) \le f(y_t) + \langle x_{t+1} - y_t, f'(y_t) \rangle + \frac{L}{2} \|x_{t+1} - y_t\|^2 + M \|x_{t+1} - y_t\| + h(x_{t+1})$$

$$\le \underbrace{f(y_t) + \langle x_{t+1} - y_t, G(y_t) \rangle + \left(\frac{\mu}{\tau \theta_t^2} + \frac{\gamma_t}{\tau}\right) V(x_{t+1}, y_t) + h(x_{t+1})}_{C_1}$$

$$\underbrace{-\frac{1}{2} \left(\frac{\mu}{\tau \theta_t^2} + \frac{\gamma_t}{\tau} - L\right) \|x_{t+1} - y_t\|^2 - \langle x_{t+1} - y_t, \Delta_t \rangle + M \|x_{t+1} - y_t\|}_{C_2}$$
(12)

We bound the terms C_1 and C_2 respectively. Let \widehat{x}_{t+1} be the convex combination of x_t and z_{t+1} :

$$\widehat{x}_{t+1} = (1 - \theta_t)x_t + \theta_t z_{t+1}.$$

Then we have $\widehat{x}_{t+1} - y_t = \theta_t(z_{t+1} - \widehat{z}_t)$, where

$$\widehat{z}_t = \frac{\theta_t \mu}{\mu + \gamma_t \theta_t^2} y_t + \frac{(1 - \theta_t) \mu + \gamma_t \theta_t^2}{\mu + \gamma_t \theta_t^2} z_t,$$

which is a convex combination of y_t and z_t . By the fact that x_{t+1} is the minimizer of C_1 and utilizing the relationship $V(x_{t+1},y_t) \leq \frac{\tau \|x_{t+1}-y_t\|^2}{2}$ and $\widehat{x}_{t+1}-y_t=\theta_t(z_{t+1}-\widehat{z}_t)$:

$$C_1 \le f(y_t) + \langle \widehat{x}_{t+1} - y_t, f'(y_t) \rangle + \theta_t \langle z_{t+1} - \widehat{z}_t, \Delta_t \rangle + \left(\frac{\mu + \gamma_t \theta_t^2}{2} \right) \|z_{t+1} - \widehat{z}_t\|^2 + h(\widehat{x}_{t+1}).$$
 (13)

By the convexity of $\|\cdot\|^2$ and the fact that $\frac{1}{2}\|x-y\|^2 \leq V(x,y)$ for any $x,y \in \mathcal{X}$:

$$\left(\frac{\mu + \gamma_t \theta_t^2}{2}\right) \|z_{t+1} - \widehat{z}_t\|^2 \le \theta_t \mu V(z_{t+1}, y_t) + \left((1 - \theta_t)\mu + \theta_t^2 \gamma_t\right) V(z_{t+1}, z_t). \tag{14}$$

We plug Eq.(14) back into RHS of Eq.(13) and substitute \hat{x}_{t+1} with $(1 - \theta_t)x_t + \theta_t z_{t+1}$. By the convexity of $h(\cdot)$:

$$C_{1} \leq (1 - \theta_{t}) \left(f(y_{t}) + \langle x_{t} - y_{t}, f'(y_{t}) \rangle + h(x_{t}) \right)$$

$$+ \underbrace{\theta_{t} \left(f(y_{t}) + \langle z_{t+1} - y_{t}, G(y_{t}) \rangle + h(z_{t+1}) + \mu V(z_{t+1}, y_{t}) + \left(\frac{(1 - \theta_{t})\mu}{\theta_{t}} + \gamma_{t}\theta_{t} \right) V(z_{t+1}, z_{t}) \right)}_{C_{3}}$$

$$+ \underbrace{\theta_{t} \langle z_{t+1} - \widehat{z}_{t}, \Delta_{t} \rangle + \theta_{t} \langle y_{t} - z_{t+1}, \Delta_{t} \rangle}_{(1 - \theta_{t}) \phi(x_{t}) + C_{3} + \theta_{t} \langle y_{t} - \widehat{z}_{t}, \Delta_{t} \rangle}.$$

$$(15)$$

Now we bound C_3 using Proposition 1. Utilizing the first equality in Eq. (11), we can re-write z_t as

$$z_t = \operatorname*{arg\,min}_{x \in \mathcal{X}} \left\{ \widetilde{\psi}_t(x) + \sum_{i=0}^{t-1} \frac{\mu}{\nu_i} V(x, y_i) + \gamma_t V(x, x_0) \right\},$$

where

$$\widetilde{\psi}_t(x) := \sum_{i=0}^{t-1} \frac{f(y_i) + \langle x - y_i, G(y_i) \rangle + h(x)}{\nu_i}$$

Furthermore, we define $\psi_t(x) := \sum_{i=0}^{t-1} \frac{f(y_i) + \langle x-y_i, G(y_i) \rangle + h(x) + \mu V(x,y_i)}{\nu_i}$ and apply Proposition 1 with $x = z_{t+1}$:

$$\left(\sum_{i=0}^{t-1} \frac{\mu}{\nu_i} + \gamma_t\right) V(z_{t+1}, z_t) \leq \left(\widetilde{\psi}_t(z_{t+1}) + \sum_{i=0}^{t-1} \frac{\mu}{\nu_i} V(z_{t+1}, y_i) + \gamma_t V(z_{t+1}, x_0)\right) - \left(\widetilde{\psi}_t(z_t) + \sum_{i=0}^{t-1} \frac{\mu}{\nu_i} V(z_t, y_i) + \gamma_t V(z_t, x_0)\right) \\
= \psi_t(z_{t+1}) + \gamma_t V(z_{t+1}, x_0) - \psi_t(z_t) - \gamma_t V(z_t, x_0) \quad (17)$$

We can bound the last term in C_3 by Eq.(17). In particular, according to Eq.(11):

$$\left(\frac{(1-\theta_{t})\mu}{\theta_{t}} + \gamma_{t}\theta_{t}\right)V(z_{t+1}, z_{t}) \leq \nu_{t}\left(\sum_{i=0}^{t-1}\frac{\mu}{\nu_{i}} + \gamma_{t}\right)V(z_{t+1}, z_{t}) \\
\leq \nu_{t}\left(\psi_{t}(z_{t+1}) + \gamma_{t}V(z_{t+1}, x_{0}) - \psi_{t}(z_{t}) - \gamma_{t}V(z_{t}, x_{0})\right).$$

With the above inequality, we immediately obtain an upper bound for C_3 . Therefore, by the definition of $\psi_t(\cdot)$, we bound the term C_1 by:

$$C_1 \le (1 - \theta_t)\phi(x_t) + \theta_t \nu_t \left(\psi_{t+1}(z_{t+1}) - \psi_t(z_t) + \gamma_t V(z_{t+1}, x_0) - \gamma_t V(z_t, x_0)\right) + \theta_t \langle y_t - \widehat{z}_t, \Delta_t \rangle. \tag{18}$$

To bound C_2 , since the parameter c>0 whenever $\mu=0$, we always have $\frac{\mu}{\tau\theta_t^2}+\frac{\gamma_t}{\tau}-L>0$. Using a simple inequality: $-\frac{\alpha}{2}\kappa^2+\beta\kappa\leq\frac{\beta^2}{2\alpha}$ ($\alpha>0$), with $\alpha=\frac{\mu}{\tau\theta_t^2}+\frac{\gamma_t}{\tau}-L$, $\beta=\|\Delta_t\|_*+M$ and $\kappa=\|x_{t+1}-y_t\|$, we have:

$$C_{2} \leq -\frac{1}{2} \left(\frac{\mu}{\tau \theta_{t}^{2}} + \frac{\gamma_{t}}{\tau} - L \right) \|x_{t+1} - y_{t}\|^{2} + \|x_{t+1} - y_{t}\| (\|\Delta_{t}\|_{*} + M) \leq \frac{(\|\Delta_{t}\|_{*} + M)^{2}}{2 \left(\frac{\mu}{\tau \theta_{t}^{2}} + \frac{\gamma_{t}}{\tau} - L \right)}.$$
(19)

By summing up the upper bound for C_1 in Eq.(18) and the bound for C_2 in Eq.(19), we obtain an upper bound for $\phi(x_{t+1})$ according to Eq.(12). Utilizing the second relation in Eq. (11), we build up the following recursive inequality:

$$\frac{\phi(x_{t+1})}{\theta_{t}\nu_{t}} \leq \frac{\phi(x_{t})}{\theta_{t-1}\nu_{t-1}} + \left(\psi_{t+1}(z_{t+1}) - \psi_{t}(z_{t}) + \gamma_{t}V(z_{t+1}, x_{0}) - \gamma_{t}V(z_{t}, x_{1})\right) \\
+ \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{t}} + \frac{\theta_{t}\gamma_{t}}{\tau} - \theta_{t}L\right)\nu_{t}} + \frac{\langle y_{t} - \widehat{z}_{t}, \Delta_{t} \rangle}{\nu_{t}} \leq \cdots \\
\leq \frac{\phi(x_{0})}{\theta_{-1}\nu_{-1}} + \psi_{t+1}(z_{t+1}) - \psi_{0}(z_{0}) + \gamma_{t}V(z_{t+1}, x_{0}) - \gamma_{t}V(z_{t}, x_{1}) \\
+ \sum_{i=0}^{t} \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{i}} + \frac{\theta_{i}\gamma_{i}}{\tau} - \theta_{i}L\right)\nu_{i}} + \sum_{i=0}^{t} \frac{\langle y_{i} - \widehat{z}_{i}, \Delta_{i} \rangle}{\nu_{i}} \\
= \psi_{t+1}(z_{t+1}) + \gamma_{t}V(z_{t+1}, x_{0}) + \sum_{i=0}^{t} \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{i}} + \frac{\theta_{i}\gamma_{i}}{\tau} - \theta_{i}L\right)\nu_{i}} + \sum_{i=0}^{t} \frac{\langle y_{i} - \widehat{z}_{i}, \Delta_{i} \rangle}{\nu_{i}}, (20)$$

where the last inequality is obtained by the fact that $\frac{1}{\theta_{-1}\nu_{-1}}=0$, $V(z_0,x_0)=0$, $\psi_0(z_0)=0$. Using the fact that $z_{t+1}=\arg\min_{x\in\mathcal{X}}\left\{\psi_{t+1}(x)+\gamma_{t+1}V(x,x_0)\right\}$ and $\gamma_t\leq\gamma_{t+1}$, Eq.(20) further implies that:

$$\frac{\phi(x_{t+1})}{\theta_{t}\nu_{t}} \leq \psi_{t+1}(x^{*}) + \gamma_{t+1}V(x^{*}, x_{0}) + \sum_{i=0}^{t} \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{i}} + \frac{\theta_{i}\gamma_{i}}{\tau} - \theta_{i}L\right)\nu_{i}} + \sum_{i=0}^{t} \frac{\langle y_{i} - \widehat{z}_{i}, \Delta_{i} \rangle}{\nu_{i}}$$

$$= \sum_{i=0}^{t} \frac{f(y_{i}) + \langle x^{*} - y_{i}, f'(y_{i}) \rangle + h(x^{*}) + \mu V(x^{*}, y_{i})}{\nu_{i}} + \sum_{i=0}^{t} \frac{\langle x^{*} - y_{i}, \Delta_{i} \rangle}{\nu_{i}}$$

$$+ \gamma_{t+1}V(x^{*}, x_{0}) + \sum_{i=0}^{t} \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{i}} + \frac{\theta_{i}\gamma_{i}}{\tau} - \theta_{i}L\right)\nu_{i}} + \sum_{i=0}^{t} \frac{\langle y_{i} - \widehat{z}_{i}, \Delta_{i} \rangle}{\nu_{i}}$$

$$\leq \sum_{i=0}^{t} \frac{\phi(x^{*})}{\nu_{i}} + \gamma_{t+1}V(x^{*}, x_{0}) + \sum_{i=0}^{t} \frac{(\|\Delta_{i}\|_{*} + M)^{2}}{2\left(\frac{\mu}{\tau\theta_{i}} + \frac{\theta_{i}\gamma_{i}}{\tau} - \theta_{i}L\right)\nu_{i}} + \sum_{i=0}^{t} \frac{\langle x^{*} - \widehat{z}_{i}, \Delta_{i} \rangle}{\nu_{i}}.(21)$$

Multiplying by $\theta_t \nu_t$ on both sides of Eq.(21), we obtain the result in Eq.(1). From the properties of Δ_i in Eq.(8)–(10), we conclude that for all i, $\mathbb{E}\langle x^*-\widehat{z}_i,\Delta_i\rangle=0$ and $\mathbb{E}(\|\Delta_i\|_*+M)^2\leq 2\sigma^2+2M^2$. By taking the expectation on both sides of Eq.(1) and using the aforementioned properties for Δ_i , we obtain the result in Eq.(3).

Corollary 1. For convex f(x) with $\widetilde{\mu} = 0$ (or equivalently $\mu = 0$), by setting $c = \frac{\sqrt{\tau}(\sigma + M)}{2\sqrt{V(x^*, x_0)}}$ and $\Gamma = L$, we obtain:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \frac{4\tau LV(x^*, x_0)}{N^2} + \frac{8(\sigma + M)\sqrt{\tau V(x^*, x_0)}}{\sqrt{N}}.$$
 (22)

Proof. When $\mu = 0$, the expected gap in the objective function in Eq.(3) for the last iterate becomes:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \theta_N \nu_N \gamma_{N+1} V(x^*, x_0) + (\sigma^2 + M^2) \theta_N \nu_N \sum_{t=0}^N \frac{1}{\left(\frac{\gamma_t}{\tau} - L\right) \theta_t \nu_t}$$
(23)

With choice of $\theta_N = \frac{2}{N+2}$, $\nu_N = \frac{2}{N+1}$ and $\gamma_{N+1} = c(N+2)^{3/2} + \tau L$, the first term in Eq.(23) is bounded by:

$$\theta_N \nu_N \gamma_{N+1} V(x^*, x_0) \le \frac{4\tau L V(x^*, x_0)}{N^2} + \frac{8c V(x^*, x_0)}{\sqrt{N}}$$
 (24)

Similarly, the second term in Eq.(23) can be bounded by:

$$(\sigma^2 + M^2)\theta_N \nu_N \sum_{t=0}^N \frac{1}{\left(\frac{\gamma_t}{\tau} - L\right)\theta_t \nu_t} \le \frac{2\tau(\sigma + M)^2}{c\sqrt{N}}$$
 (25)

By summing the above two inequalities, we obtain that:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \frac{4\tau LV(x^*, x_0)}{N^2} + \frac{8c\ V(x^*, x_0)}{\sqrt{N}} + \frac{2\tau(\sigma + M)^2}{c\sqrt{N}}$$
(26)

We minimize the RHS of Eq.(26) with respect to c and obtain the convergence rate result in Corollary 1 and the corresponding optimal $c = \frac{\sqrt{\tau}(\sigma + M)}{2\sqrt{V(x^*, x_0)}}$.

Corollary 2. For strongly convex f(x) with $\tilde{\mu} > 0$, we set c = 0 and $\Gamma = L$ and obtain that:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \frac{4\tau LV(x^*, x_0)}{N^2} + \frac{4\tau(\sigma^2 + M^2)}{\mu N}.$$
 (27)

Proof. When $\mu > 0$, we set c = 0 and $\gamma_t \equiv \tau L$ and then Eq.(3) becomes:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \theta_N \nu_N \tau L V(x^*, x_0) + \frac{\tau(\sigma^2 + M^2)}{\mu} \theta_N \nu_N \sum_{t=0}^N \frac{\theta_t}{\nu_t} \le \frac{4\tau L V(x^*, x_0)}{N^2} + \frac{4\tau(\sigma^2 + M^2)}{\mu N}.$$
(28)

This gives the result in Eq.(27) in Corollary 1.

2 High Probability Bounds for ORDA

Theorem 2. We assume that (1) $\mathbb{E}\left(\exp\left\{\|G(x,\xi)-f'(x)\|_*^2/\sigma^2\right\}\right) \le \exp\{1\}$, $\forall x \in \mathcal{X}$ (i.e., "light-tail" assumption) and (2) there exists a constant D such that $\|x^*-\widehat{z}_t\| \le D$ for all t. By setting $\Gamma = L$ in ORDA, for any iteration t and $\delta \in (0,1)$, we have, with probability at least $1-\delta$:

$$\phi(x_{t+1}) - \phi(x^*) \le \epsilon(t, \delta) \tag{29}$$

with

$$\epsilon(t,\delta) = \theta_t \nu_t \gamma_{t+1} V(x^*, x_0) + \theta_t \nu_t \sum_{i=0}^t \frac{M^2}{\eta_i \nu_i} + \theta_t \left[\sum_{i=0}^t \frac{\sigma^2}{\eta_i} + \frac{8\sigma^2 \ln(2/\delta)}{(\frac{\mu + \gamma_0}{\tau} - L)} + 16\sigma^2 \sqrt{\sum_{i=0}^t \frac{\ln(2/\delta)}{\eta_i^2}} \right] + \sqrt{3 \ln \frac{2}{\delta}} \theta_t \nu_t D\sigma \left(\sum_{i=0}^t \frac{1}{\nu_i^2} \right)^{1/2},$$
(30)

where $\eta_i = \left(\frac{\mu}{\tau\theta_i} + \frac{\theta_i\gamma_i}{\tau} - \theta_iL\right)$.

For convex f(x) with $\widetilde{\mu}=0$, by setting $c=\frac{\sqrt{\tau}(\sigma+M)}{2\sqrt{V(x^*,x_0)}}$ and $\Gamma=L$, we have

$$\epsilon(N,\delta) = \frac{4\tau LV(x^*, x_0)}{N^2} + \frac{24\sqrt{\tau V(x^*, x_0)(\sigma + M)}}{\sqrt{N}} + \frac{16\ln(2/\delta)\sqrt{\tau V(x^*, x_0)}\sigma}{N} + \frac{16\sigma\sqrt{\ln(2/\delta)\ln(N + 3)V(x^*, x_0)}}{N} + \frac{2\sqrt{\ln(2/\delta)}D\sigma}{\sqrt{N}}.$$
(31)

For convex f(x) with $\widetilde{\mu} > 0$ (or equivalently $\mu > 0$), by setting c = 0 and $\Gamma = L$, , we have

$$\epsilon(N,\delta) = \frac{4\tau LV(x^*,x_0)}{N^2} + \frac{16\tau(\sigma^2 + M^2)\ln(N+2)}{\mu N} + \frac{48\sigma^2\ln(2/\delta)}{\mu N} + \frac{2\sqrt{\ln(2/\delta)}D\sigma}{\sqrt{N}}.$$
(32)

We prove Theorem 2 using the following two lemmas.

Lemma 1 (Lemma 6 in [2]). Let ξ_0, ξ_1, \ldots be a sequence of i.i.d. random variables and $\varphi_i = \varphi_i(\xi_{[i]})$ be deterministic Borel functions of $\xi_{[i]}$ such that:

1.
$$\mathbb{E}(\varphi_i|\xi_{[i-1]})=0$$
;

2. There exists a positive deterministic sequence $\{\sigma_i\}$: $\mathbb{E}\left(\exp\left\{\varphi_i^2/\sigma_i^2\right\}|\xi_{[i-1]}\right) \leq \exp\{1\}$.

Then for any
$$\delta \in (0,1)$$
, $Prob\left(\sum_{i=0}^t \varphi_i \ge \sqrt{3\ln(1/\delta)}(\sum_{i=0}^t \sigma_i^2)^{1/2}\right) \le \delta$.

Lemma 2 (Lemma 5 in [1]). *Under the assumptions in Theorem 2, for any positive and nondecreasing sequence* η_i , we have

$$\sum_{i=0}^{t} \frac{\|\Delta_i\|_*^2}{\eta_i} \ge \sum_{i=0}^{t} \frac{\mathbb{E}\|\Delta_i\|_*^2}{\eta_i} + \max\left\{ \frac{8\sigma^2 \ln(1/\delta)}{\eta_0}, 16\sigma^2 \sqrt{\sum_{i=0}^{t} \frac{\ln(1/\delta)}{\eta_i^2}} \right\}$$

holds with probability at most $\delta \in (0, 1)$.

We note that although Lemma 5 in [1] assumes that $\eta_i = \eta \sqrt{i+1}$, its proof and conclusion remain valid for any positive nondecreasing sequence $\{\eta_i\}$.

Proof of Theorem 2. To simply notations, let $\eta_i = \left(\frac{\mu}{\tau\theta_i} + \frac{\theta_i\gamma_i}{\tau} - \theta_iL\right)$. For both convex and strongly convex f(x), according to our setting of parameters, it is easy to verifty that $\{\eta_i\}$ is a positive monotonically increasing sequence. According to Theorem 1:

$$\phi(x_{t+1}) - \phi(x^*) \leq \underbrace{\theta_t \nu_t \gamma_{t+1} V(x^*, x_0) + \theta_t \nu_t \sum_{i=0}^t \frac{M^2}{\eta_i \nu_i}}_{C_1} + \underbrace{\theta_t \nu_t \sum_{i=0}^t \frac{\|\Delta_i\|_*^2}{\eta_i \nu_i}}_{C_2} + \underbrace{\theta_t \nu_t \sum_{i=0}^t \frac{\langle x^* - \widehat{z}_i, \Delta_i \rangle}{\nu_i}}_{C_3},$$

Firstly, we analyze the last term C_3 using Lemma 1. Let $\varphi_i(\xi_{[i]}) := \frac{\langle x^* - \widehat{z}_i, \Delta_i \rangle}{\nu_i}$ and hence $C_3 = \theta_t \nu_t \sum_{i=0}^t \varphi_i$. It is easy to verify that $\mathbb{E}(\varphi_i | \xi_{[i-1]}) = 0$ and there exists a sequence $\sigma_i = \frac{D\sigma}{\nu_i}$ such that:

$$\mathbb{E}(\exp\{\varphi_i^2/\sigma_i^2\}|\xi_{[i-1]}) \equiv \mathbb{E}\left(\exp\left\{\left(\frac{\langle x^* - \widehat{z}_i, \Delta_i \rangle}{\nu_i}\right)^2 / \frac{D^2 \sigma^2}{\nu_i^2}\right\}\right) \leq \mathbb{E}\left(\exp\left\{\frac{\|x^* - \widehat{z}_i\|^2 \|\Delta_i\|_*^2}{D^2 \sigma^2}\right\}\right) \leq \exp\{1\},$$

where the last inequality holds because $||x^* - \widehat{z}_t|| \le D$ and our "light-tail" assumption. By Lemma 1, we conclude that for any $\delta \in (0,1)$,

$$\Pr\left(C_3 \ge \underbrace{\sqrt{3\ln\frac{2}{\delta}}\theta_t\nu_t D\sigma\left(\sum_{i=0}^t \frac{1}{\nu_i^2}\right)^{1/2}}\right) \le \frac{\delta}{2}.$$
(33)

Secondly, we bound the term C_2 using Lemma 2. Since ν_i is decreasing in i, we have

$$C_2 = \theta_t \nu_t \sum_{i=0}^t \frac{\|\Delta_i\|_*^2}{\eta_i \nu_i} \le \theta_t \nu_t \sum_{i=0}^t \frac{\|\Delta_i\|_*^2}{\eta_i \nu_t} = \theta_t \sum_{i=0}^t \frac{\|\Delta_i\|_*^2}{\eta_i}.$$
 (34)

Since η_i is increasing in i when $\Gamma = L$, we can directly apply Lemma 2 as follows:

$$\Pr\left(C_2 \ge \theta_t \left[\sum_{i=0}^t \frac{\sigma^2}{\eta_i} + \frac{8\sigma^2 \ln(2/\delta)}{(\frac{\mu + \gamma_0}{\tau} - L)} + 16\sigma^2 \sqrt{\sum_{i=0}^t \frac{\ln(2/\delta)}{\eta_i^2}}\right]\right) \\
\le \Pr\left(\theta_t \sum_{i=0}^t \frac{\|\Delta_i\|_*^2}{\eta_i} \ge \theta_t \left[\sum_{i=0}^t \frac{\mathbb{E}\|\Delta_i\|_*^2}{\eta_i} + \max\left\{\frac{8\sigma^2 \ln(2/\delta)}{(\frac{\mu + \gamma_0}{\tau} - L)}, 16\sigma^2 \sqrt{\sum_{i=0}^t \frac{\ln(2/\delta)}{\eta_i^2}}\right\}\right]\right) \\
\le \frac{\delta}{2}$$

where the first inequality is from Eq. (34), $a+b \geq \max\{a,b\}$ and the fact $\mathbb{E}\|\Delta_i\|_*^2 \leq \sigma^2 \ln\left(\mathbb{E}\exp\left(\frac{\|\Delta_i\|_*^2}{\sigma^2}\right)\right) \leq \sigma^2 \ln(e) = \sigma^2$ and the second inequality is due to Lemma 2.

Combining Eq.(35) and Eq. (33), by the union bound:

$$\Pr\left(\phi(x_{t+1}) - \phi(x^*) \ge C_1 + D_2 + D_3\right) \le \Pr\left(C_1 + C_2 + C_3 \ge C_1 + D_2 + D_3\right)$$

$$\le \Pr\left(C_2 \ge D_2\right) + \Pr\left(C_3 \ge D_3\right) \le \frac{\delta}{2} + \frac{\delta}{2} = \delta,$$
(35)

we immediately obtain Eq. (30). The bounds in Eq. (31) and Eq. (32) can be derived by plugging all the parameters into Eq. (30).

3 Proof of Convergence Rate for Multi-stage ORDA

Theorem 3. If we run multi-stage ORDA for K stages with $K = \log \frac{V_0}{\epsilon}$ for any given ϵ , we have $\mathbb{E}(\phi(\widetilde{x}_K)) - \phi(x^*) \le \epsilon$ and the total number of iterations is upper bounded by:

$$N = \sum_{k=1}^{K} N_k \le 4\sqrt{\frac{L}{\mu}} \log \frac{V_0}{\epsilon} + \frac{1024(\sigma^2 + M^2)}{\mu \epsilon}.$$
 (36)

To prove theorem 3, we first state a corollary of Theorem 1.

Corollary 3. For strongly convex f(x), by setting c = 0 and $\Gamma = \Lambda + L$ in ORDA, we obtain that:

$$\mathbb{E}\phi(x_{N+1}) - \phi(x^*) \le \frac{4\tau(\Lambda + L)V(x^*, x_0)}{N^2} + \frac{(N+3)(\sigma^2 + M^2)}{\Lambda}.$$
 (37)

The proof technique follows the proof in [3]. The main idea is to show that $\mathbb{E}(\phi(\widetilde{x}_k)) - \phi(x^*) \le \mathcal{V}_0 2^{-k}$, where \widetilde{x}_k is the solution from the k-th stage.

Proof. We show by induction that

$$\mathbb{E}(\phi(\widetilde{x}_k)) - \phi(x^*) \le \mathcal{V}_0 2^{-k}. \tag{38}$$

By the definition of V_0 ($V_0 > \phi(\widetilde{x}_0) - \phi(x^*)$), this inequality holds for k = 0.

Assuming Eq.(38) holds for the (k-1)-th stage, by the strong convexity of f(x), we have

$$\mathbb{E}[V(x^*, \widetilde{x}_{k-1})] \leq \mathbb{E}\left[\frac{\tau}{2} \|\widetilde{x}_{k-1} - x^*\|^2\right] \leq \mathbb{E}\left[\frac{\tau}{\widetilde{\mu}} (\phi(\widetilde{x}_{k-1}) - \phi(x^*))\right] \leq \frac{\mathcal{V}_0 2^{-(k-1)}}{\mu}$$

According to Corollary 3 and the setting of N_k and Γ_k , we have

$$\begin{split} \mathbb{E}[\phi(\widetilde{x}_k) - \phi(x^*)] & \leq & \frac{4\tau(\Lambda_k + L)\mathbb{E}V(x^*, \widetilde{x}_{k-1})}{N_k^2} + \frac{(N_k + 3)(\sigma^2 + M^2)}{\Lambda_k} \\ & \leq & \frac{4\tau L \mathcal{V}_0 2^{-(k-1)}}{\mu N_k^2} + \frac{4\tau \Lambda_k \mathcal{V}_0 2^{-(k-1)}}{\mu N_k^2} + \frac{4N_k(\sigma^2 + M^2)}{\Lambda_k} \\ & \leq & \frac{4\tau L \mathcal{V}_0 2^{-(k-1)}}{\mu N_k^2} + \frac{8\sqrt{(\sigma^2 + M^2)\tau \mathcal{V}_0 2^{-(k-1)}}}{\sqrt{\mu N_k}} \\ & \leq & \frac{\mathcal{V}_0 2^{-k}}{2} + \frac{\mathcal{V}_0 2^{-k}}{2} = \mathcal{V}_0 2^{-k}. \end{split}$$

Therefore, we prove that $\mathbb{E}[\phi(\widetilde{x}_k) - \phi(x^*)] \leq \mathcal{V}_0 2^{-k}$ for $k \geq 1$.

After running K stages of multi-stage ORDA with $K = \log_2\left(\frac{\mathcal{V}_0}{\epsilon}\right)$, we have $\mathbb{E}[\phi(\widetilde{x}_k) - \phi(x^*)] \leq \mathcal{V}_0 2^{-K} = \epsilon$. The total number of iterations from these K stages is upper bounded by:

$$\begin{split} \sum_{k=1}^{K} N_k & \leq \sum_{k=1}^{K} \max \left\{ 4 \sqrt{\frac{\tau L}{\mu}}, \frac{2^{k+9} \tau(\sigma^2 + M^2)}{\mu \mathcal{V}_0} \right\} \\ & \leq \sum_{k=1}^{K} \left[4 \sqrt{\frac{\tau L}{\mu}} + \frac{2^{k+9} \tau(\sigma^2 + M^2)}{\mu \mathcal{V}_0} \right] \\ & = 4 \sqrt{\frac{\tau L}{\mu}} K + \frac{1024 \tau(\sigma^2 + M^2)(2^K - 1)}{\mu \mathcal{V}_0} \\ & \leq 4 \sqrt{\frac{\tau L}{\mu}} \log_2 \left(\frac{\mathcal{V}_0}{\epsilon} \right) + \frac{1024 \tau(\sigma^2 + M^2)}{\mu \epsilon} \end{split}$$

References

- [1] J. Duchi, P. L. Bartlett, and M. Wainwright. Randomized smoothing for stochastic optimization. arXiv:1103.4296v1, 2011.
- [2] G. Lan. An optimal method for stochastic composite optimization. *Mathematical Programming*, 2010
- [3] G. Lan and S. Ghadimi. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, part ii: shrinking procedures and optimal algorithms. Technical report, University of Florida, 2010.
- [4] G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order methods with $o(1/\epsilon)$ iteration-complexity for cone programming. *Mathematical Programming*, 2009.
- [5] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. *SIAM Journal on Optimization (Submitted)*, 2008.