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Risk-Management and Risk-Analysis-Based Decision Tools
for Attacks on Electric Power

Jeffrey S. Simonoff,1 Carlos E. Restrepo,2 and Rae Zimmerman2∗

Incident data about disruptions to the electric power grid provide useful information that can

be used as inputs into risk management policies in the energy sector for disruptions from a

variety of origins, including terrorist attacks. This article uses data from the Disturbance Anal-

ysis Working Group (DAWG) database, which is maintained by the North American Electric

Reliability Council (NERC), to look at incidents over time in the United States and Canada

for the period 1990–2004. Negative binomial regression, logistic regression, and weighted least

squares regression are used to gain a better understanding of how these disturbances varied

over time and by season during this period, and to analyze how characteristics such as number

of customers lost and outage duration are related to different characteristics of the outages.

The results of the models can be used as inputs to construct various scenarios to estimate po-

tential outcomes of electric power outages, encompassing the risks, consequences, and costs

of such outages.

KEY WORDS: Electric power outages; logistic regression; negative binomial regression; prediction

interval; weighted least squares

1. INTRODUCTION

Disruptions to the power grid are an ongoing con-
cern for risk management in the energy sector. Al-
though there have, to date, not been any terrorist at-
tacks on the power grid in the United States or Canada
by a foreign entity, such attacks are common in other
countries. The consequences of these disruptions in-
clude effects on the economic and health status of the
country. It is thus important to try to understand the
characteristics of disruption to the power grid, so that
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reasonable assessments of the risks associated with
such disruptions can be quantified.

In this article, various forms of statistical regres-
sion analyses are used to model the characteristics
of power outages in the United States and Canada.
None of these disruptions are a result of terrorist
activity, but understanding the effects of “typical” dis-
ruptions would make it possible to estimate the ef-
fects of a terrorist-based disruption, especially since
there is enough of a similarity between the types of
components disrupted in both types of events (as de-
scribed below). The potentially large effects of such
disruptions, as evidenced by the roughly 50 million
people affected by the August 14, 2003 outage lasting
an average of two days in most places in the north-
eastern United States and southeastern Canada, and
the roughly 100,000 people affected by the one-week
July 18, 2006 outage in Queens neighborhoods in
New York City (Newsday, 2006), reinforces the impor-
tance of understanding the potential implications of
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terror-related outages. The resultant regression mod-
els allow us to see what characteristics of an event are
associated with its duration and how many customers
are affected. On the basis of these models, predic-
tions (and probability intervals for those predictions)
can be made for different disruption scenarios that
allow for quantitative assessments of potential risks
and consequences of attacks on the power grid re-
gardless of the source of the attack. Of course, these
predictions are also useful in the context of nonter-
rorist disruption of the power grid, such as from the
severe weather effects of tornadoes, hurricanes, and
winter storms.

1.1. Analogies Between Terrorist and Nonterrorist
Disruptions of Electric Power Systems

An analysis of selected data from the National
Memorial Institute for the Prevention of Terrorism
(MIPT) database (www.mipt.org) indicates that in a
10-year period between 1994 and 2004, there were
more than 300 terrorist attacks around the world
against electricity infrastructure alone (Zimmerman
et al., 2005). The analogy between international ter-
rorist attacks and domestic nonterrorist disruptions
of electric power systems is supported by a compari-
son of the MIPT database of international attacks and
the Disturbance Analysis Working Group (DAWG)
database, maintained by the North American Elec-
tric Reliability Council (NERC) for North American
disruptions. This comparison indicates similarities be-
tween components disrupted by terrorist attacks out-
side of North America and nonterrorist disruptions
within North America. The most common compo-
nents disrupted in both cases were transmission lines
and towers, accounting for about 90% of North Amer-
ican disruptions and about two-thirds of international
terrorist-related disruptions (Zimmerman et al., 2005,
Table 1, p. 19). These similarities, at least at the compo-
nent or consequence level between terrorist and non-
terrorist electricity disruptions, support using non-
terrorist databases to estimate the potential conse-
quences of terrorist attacks on electricity.

That research further explored grid configura-
tions (particularly at the transmission level) that could
contribute to vulnerability and the degree of the con-
sequences of a disruption for major cities. In short, cer-
tain cities are more vulnerable than others by virtue of
their reliance on transmission lines that enter the city
from just one or two directions (Zimmerman et al.,
2005, pp. 15–17). This point informs the choice of ap-
plication areas later in this article.

1.2. Literature Review of Event-Based Analyses
Modeling of Electric Power Outages

The major contribution of this work is to provide a
statistical regression-based approach using trend data
to model the consequences and severity of outages
from the characteristics of outage events. This will
serve as a basis for decision tools that enable users to
estimate the probability of certain impacts of outages
occurring, and tailor these estimates to specific geo-
graphic areas. To our knowledge, this type of approach
using statistical regression models has not been ap-
plied to estimating these dimensions of electric power
outages.

As summarized by Zimmerman et al. (2005), one
body of literature contains extensive analyses of elec-
tric power outage event data (see, for example, Amin,
2004; Carreras et al., 2002; Chen et al., 2001; Liao
et al., 2004), but does not use statistical regression
analysis. Another body of literature has attempted
to model outages, but primarily by building scenar-
ios and/or through grid network disruption estimates
(see, for example, Ezell et al., 2000a, 2000b; Haimes,
1981; Salmeron et al., 2004; Lemon & Apostolakis,
2004; Apostolakis & Lemon, 2005). A third related
literature uses scenario-based or simulation-based
modeling of infrastructure interdependencies in gen-
eral (see, for example, Garrick et al., 2004; Martz &
Johnson, 1987; Masiello et al., 2004; Paté-Cornell &
Guikema, 2002).

Several studies have analyzed data from the
DAWG database using methods that are different
from those used in this article and for a different pur-
pose. Chen et al. (2001) analyzed the data for the pe-
riod 1984–1999 and constructed blackout time series
signals. The size of the blackouts is represented by
the amount of power lost in megawatts, the number
of customers affected, and the duration of the outage
or restoration time. The time series include data for
every day of the period with zero every day except
for the days when blackouts occurred. The time se-
ries is then used to explore whether the data have a
power law distribution by using a cumulative distri-
bution function (CDF). In addition, the scaled win-
dowed variance (SWV) method is used to estimate
the Hurst or scaling exponents of the various time
series and its suitability to the data is discussed.

Carreras et al. (2002) also analyzed DAWG data
for the period 1984–1998 to examine whether the com-
plex dynamic of the blackouts is governed by self-
organized criticality (SOC). The authors constructed
times series with the resolution of a day for the
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number of blackouts and for three measures of black-
out size: energy unserved, amount of power lost in
megawatts, and number of customers affected. The
data are used to explore dependencies in the time
domain. They also find a power law tail of the prob-
ability distribution functions (PDF). The authors use
the rescaled range statistics (R/S statistics) to calcu-
late Hurst exponents for the different measures of
blackout size. Similarly, Talukdar et al. (2003) also
use DAWG data for the period 1984–2000 to show
that large blackouts, such as those exceeding 500
megawatts lost, can be described by a power law
whereas the smaller blackouts follow an exponential
curve. These types of analyses of the DAWG data are
very different in purpose and methods to the analyses
presented in this article and described in the following
sections.

2. DATA

The analyses presented in this article use data
from the Disturbance Analysis Working Group
(DAWG) database, which is maintained by the North
American Electric Reliability Council (NERC). The
database has commonly been used by researchers to
analyze power outages and various attributes of the
grid, while recognizing some of the shortcomings of
the database (Apt, 2005; Talukdar et al., 2003; Chen
et al., 2001; Carreras et al., 2002; Amin, 2004). Data
are collected on a voluntary basis, implying the pos-
sibility of unknown biases in the outages reported,
as well as potential changes in the way the data have
been reported over time. The U.S. Department of En-
ergy (2003) also has a database of outages, but for the
sake of temporal consistency and the ability to tap a
database spanning a longer time period, the DAWG
database was used throughout.

Table I. Distribution of Primary Causes

of Outages in the United States and

Canada

United States Canada

Cause Code Frequency Percent Frequency Percent

Capacity shortage C 15 3.8 1 1.0

Crime Crime 9 2.3 5 5.2

Demand reduction D 5 1.3 0 0.0

Equipment failure E 111 28.0 39 40.2

Fire F 12 3.0 0 0.0

Human error H 21 5.3 15 15.5

Operational error O 5 1.3 1 1.0

Natural disaster N 6 1.5 0 0.0

System protection S 6 1.5 2 2.1

Third party T 6 1.5 1 1.0

Unknown U 10 2.5 2 2.1

Weather W 190 48.0 31 32.0

Total 396 100.0 97 100.0

The data used in this article are for disturbances
to the electric power grids in the United States and
Canada for the period 1990–2004 (in this article the
terms disturbances, incidents, events, and outages are
used interchangeably). Information from the entries
in the DAWG database was used to create a data
set with a number of variables that characterized
each event. These included outage duration measured
in hours, number of customers lost, and megawatts
lost. All three of these variables are extremely long
right-tailed.

The mean duration of an outage in the United
States was more than 40 hours, while the median dura-
tion was 8 hours; corresponding numbers for Canada
are noticeably smaller, being 7.3 and 0.8 hours, re-
spectively (but still long right-tailed). Similarly, mean
and median customer losses were 175,346 (mean) and
67,765 (median) for the United States and 58,897
(mean) and 1 (median) for Canada, respectively, and
mean and median power loss (in MW) were 786
(mean) and 250 (median) for the United States and
513 (mean) and 258 (median) for Canada, respec-
tively. For this reason, all these variables are analyzed
in the log scale.

The cause of the incident is also a potentially im-
portant predictor of the magnitude and characteristics
of an outage and also the construction of analogies
between nonterrorist and terrorist consequences. In
addition, the relative importance of these causes can
change over time and that could have important im-
plications for policies aimed at minimizing the risk of
power outages and for the construction of scenarios
that explore economic costs associated with outages.
Table I gives the distribution of the different causes
for the incidents.

A proxy for population density in the area of the
outage was also included in the data for the purpose of
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regression modeling. This was approximated by using
population density for the state where the outage oc-
curred in the United States and for the province where
the outage occurred in Canada. It should certainly
be noted that since most outages cover geographic
regions smaller than a state or province and within
a given state population density can be highly vari-
able, this is only a crude proxy for the local population
density.

An additional measure added to the data was the
number of customers served by the utility or utilities
affected by each outage. This information was com-
piled from the U.S. Department of Energy, Energy
Information Administration’s Annual Electric Power
Industry Report (U.S. Department of Energy, 2003),
individual utility pages on the Internet, and electric
power trade associations.

3. METHODS

The first set of analyses included in this article
refers to models of counts of incidents over time. The
standard model for count response data is the Poisson
regression model, but this model imposes the restric-
tion that the mean response and the variance of the
response be equal. For the data examined here, there
is clear overdispersion, with the variance larger than
the mean. This is a common occurrence when there is
unmodeled heterogeneity in the data (that is, the time
periods are different from each other in ways that are
unknown to the analyst). For this reason, the analyses
here are based on negative binomial regression, which
accounts for this overdispersion. See Simonoff (2003,
ch. 5), for further discussion of these points. The data
for number of incidents were aggregated into three-
and six-month periods, approximating seasons, to ex-
amine whether there are time trends.

The second set of analyses refers to event-level
data. These event analyses account for characteristics
unique to the particular event, such as its cause and
location, through regression modeling. Two different
kinds of models were used for the event-level analy-
ses. In the case of number of customers lost, there are
two kinds of events: those resulting in zero customers
lost, and those with nonzero customers lost. It is im-
portant to distinguish these two types of events since
they have different characteristics. Hence, the data
were modeled in two parts. First, the characteristics
related to whether an incident has zero or nonzero
customers lost are examined. Then, given that the
number of customers lost is not zero, the characteris-
tics that help predict the actual number of customers
lost are determined.

The first part of the analysis is based on logistic
regression. In a logistic regression, the response vari-
able is binary (in this case, whether or not the event
had zero customer loss), and a binomial distribution is
used to represent its random character. The probabil-
ity of an event having zero customer loss, p, is related
to predictors through the odds, p/(1 − p); specifically,
the logarithm of the odds is modeled as a linear func-
tion of the predictors (Simonoff, 2003, ch. 9).

For the second part of the analysis, weighted least
squares (WLS) was used to correct for nonconstant
variance in the data. In the WLS analysis, the events
from causes with less variability, such as capacity
shortage and fire, are weighted higher, while those
from causes with more variability, such as equipment
failure and system protection, are weighted lower.
Weighted least squares regression was also used to
model logged duration of an outage.

Further details on the U.S. portion of this analysis
can be found in Simonoff et al. (2005).

4. RESULTS

4.1. Incidents Over Time

The first part of this analysis consists of looking
at the number of incidents aggregated over six-month
periods for 1990–2004. The negative binomial model
fits the data well. For the U.S. data the deviance equals
15.3 on 12 degrees of freedom ( p = 0.23, not rejecting
the fit of the model). The estimated annual increase in
incidents implies a 7.2% annual increase in incidents.
For Canada, the model also fits the data reasonably
well (the deviance is 32.3 on 24 degrees of freedom,
p = 0.12), and it implies an estimated 8.2% annual
increase in incidents.

Examining the data at a seasonal (three-month
period) level allows for the inclusion of different levels
for different seasons. In these analyses, winter is de-
fined as December through February, spring as March
through May, summer as June through August, and
autumn as September through November. The results
for the seasonal analysis are summarized in Fig. 1 for
the United States and in Fig. 2 for Canada. The win-
ter points (labeled “w”) and line (dotted line) are in
blue, the spring points (labeled “p”) and line (dashed
line) are in green, the summer points (labeled “u”)
and line (solid line) are in red, and the autumn points
(labeled “a”) and line (dotted-and-dashed line) are in
orange.

The negative binomial models fit the data ade-
quately. For the U.S. model, the deviance is 66.5 on
53 degrees of freedom ( p = 0.10) and implies an
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Key: The winter points (w) and dashed line are in blue, the spring points (p) and dotted line are in green, the
summer points (u) and solid line are in red, and the autumn points (a) and short dashed line are in or-
ange. Calculations by the authors.

Fig. 1. Plot of number of incidents in

United States versus time by season, with

estimated expected counts by season

superimposed on the plot.

estimated 9.7% annual increase in incidents given
season, which is highly statistically significant ( p <

0.0001). For Canada, the model fits the data barely
adequately (the deviance is 60.4 on 46 degrees of free-
dom, p = 0.08). The model implies an estimated 9.6%
annual increase in incidents given season, virtually the
same as for the U.S. data.

There are several plausible explanations for the
observed annual increase in incidents. Electricity de-
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Fig. 2. Plot of number of incidents in

Canada versus time by season, with

estimated expected counts by season

superimposed on the plot.

mand has increased steadily over time (North Ameri-
can Energy Working Group, 2006), and this increased
demand puts more strain on the electricity grid. In
addition, Lerner (2003) gave several reasons why
the deregulation of the electricity markets in the
United States and Canada starting in the 1990s would
be (and was) expected to lead to more blackouts.
Specifically, while long-distance energy transfers were
rare before deregulation, and were used mainly in
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emergencies, they have now become commonplace.
Such transfers are much more physically complex,
involve more complex interconnections between the
large physical subsections of the power grid, and in-
troduce capacity limits, resulting in greater chances
of unanticipated changes in loads on generators and
transmission lines, and hence blackouts. These prob-
lems were compounded by energy traders who de-
liberately blocked competitors’ access to the power
grid, artificially driving up prices while also increas-
ing stress on the system. Utility companies have also
cut staff, resulting in overextended workers and re-
duction in basic maintenance. Finally, as a result of
many of these factors, the grid has become far more
interconnected, so that a failure in one part of a system
is likely to affect others. Moreover, many more activ-
ities are now interconnected with electric power as
well, and these interdependencies have the potential
for increasing the consequences of an electric power
failure (Zimmerman & Restrepo, 2006; Zimmerman,
2006).

While the winter, spring, and autumn estimated
rates for the United States are similar to each other
(with autumn having a rate that is slightly lower), sum-
mer has a noticeably higher rate of incidents. The sim-
ilarity in rates across seasons is presumably from dif-
ferent weather effects operating in each season: snow
and ice in the winter, thunderstorms in parts of the
United States in spring, and, most importantly, thun-
derstorms and intense heat (with corresponding air
conditioner use) in the summer (and the lack of all of
these factors in the autumn; we might have expected
evidence of a hurricane effect in autumn, but only
Hurricane Floyd in 1999 and Hurricane Isabel in 2003
show up as noteworthy). The difference between the
summer rate and that of the other seasons is highly
statistically significant, but, more importantly, corre-
sponds to an important effect in practical terms, since
the estimated number of incidents is 60–80% higher
in summer than in the other seasons, given the year.
In the case of Canada there is little evidence of a sea-
son effect (presumably because of the less extreme
summer temperatures in Canada), although summer
does again have the highest estimated incident rate.

In addition to looking at the total number of inci-
dents over time, similar analyses were made for those
incidents with nonzero customer loss and nonzero
megawatts lost. Such incidents are of particular im-
portance, since these are the ones that actually affect
customers. Overdispersion is evident in all of the mod-
els, so all analyses are based on the negative binomial
model. For the U.S. data the estimated annual increase

in incidents with nonzero MW loss is 10.0%, which is
highly statistically significant ( p < 0.0001), with an
estimated 65–130% higher rate for summer than for
the other seasons. The summer effect is stronger than
it was in the model for number of incidents. While
more than 90% of the summer incidents had nonzero
MW loss, roughly one upon four of the incidents in the
autumn had zero MW loss. That is, nonzero MW inci-
dents are more likely in the summer, thereby strength-
ening the “summer effect.”

The results for the Canada model in terms of in-
cidents with nonzero MW loss are in direct contrast
to the situation using all of the incidents, and also in
contrast to the results for the U.S. data. There is no ev-
idence of a time trend in the nonzero MW Canadian
incidents. The implication of this is that the rate of
zero MW loss incidents in Canada has been increas-
ing in recent years. From 1990 to 1994, the proportion
of Canadian incidents with zero MW loss was never
more than 25% (among those for which MW loss was
recorded), while from 1995 to 2002, in five of the eight
years at least 30% of the incidents had zero MW loss.
It should be noted, however, that the estimated in-
crease in incident rate of 3.5%, while smaller than
that in the United States (6.0%), is not significantly
different from that value. When season is introduced,
the model implies an estimated 1.7% annual increase
in incident rate given season, which is not statistically
significant, and an estimated 75% higher rate for sum-
mer than for the other seasons, although the summer
effect is also not statistically significant.

The model for incidents with nonzero customers
lost in the United States implies an estimated 14.0%
annual increase in incident rate ( p < 0.000001), and
an estimated 75–135% higher rate for summer than
for the other seasons. The summer effect is similar to
that for the nonzero MW loss data, but the pattern
is a little more complicated: both summer and winter
have lower rates of incidents with zero customer loss
compared to spring and autumn, so the estimated rel-
ative chances of incidents in those seasons compared
to spring and autumn are now higher. Overall, while
removing the zero MW loss incidents has relatively
little effect on the estimated annual increase in inci-
dent rate, removing the zero customer loss incidents
has a stronger effect on the estimated annual increase
of rates, increasing it to 12–14%.

The results of the model for Canada are different
from those of the United States, since there is little ev-
idence of any relationship with either season or time
for incidents with nonzero customers lost. When fo-
cusing on incidents with nonzero customer loss, the
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rate of incidents in Canada is, if anything, decreasing
over time, while that in the United States is increas-
ing. This is in contrast to the situation when looking
at all incidents, where the rate is going up at a sim-
ilar rate in both countries. As was noted earlier, the
reason for this is the difference in the two countries
in the likelihood of an outage having zero customer
loss.

The generally less-serious outcomes of Canadian
incidents compared to incidents in the United States
(such as shorter typical duration, no increase over
time in incidents that resulted in nonzero customer
loss or nonzero power loss) warrants further com-
ment. Although the electricity grids in the United
States and Canada are strongly interconnected, there
are differences between the two countries that could
account for this pattern. The great majority (almost
85%) of the incidents in Canada were in provinces
that are net exporters of electricity (North Ameri-
can Energy Working Group, 2006). Incidents in such
provinces occur in areas of excess supply of electric-
ity, which can be more easily used to recover from or
compensate for local outages. The proportion of inci-
dents in provinces that are net exporters of electricity
was higher in recent years than in earlier ones (North
American Energy Working Group, 2006), which could
be a factor in why the number of more serious inci-
dents (nonzero MW loss and/or customer loss) are if
anything slightly decreasing in Canada, rather than
increasing (as they are in the United States).

The distribution of types of power plants is very
different in the United States and Canada. While
roughly half of electricity generation in the United
States comes from coal-fired plants, more than half
of electricity generation in Canada comes from hy-
dropower (estimated 2005 values) (North American
Energy Working Group, 2006). Hydroelectric plants
have an abundant and readily available local fuel sup-
ply with the exception of rare periods of drought,
while that for coal-fired plants is limited and diffi-
cult to move. This clearly has an effect on recovery
time from an outage. As noted by Lerner (2003), hy-
droelectric power plants in Ontario and Quebec were
regularly involved in long-distance power transfers
before the advent of deregulation, so it is reasonable
to speculate that they have been better able to handle
the stresses that come from such transfers noted in
Section 4.1 than other types of plants.

Another explanation for the relatively good per-
formance of the power grid in Canada is an economic
one. Electricity demand is growing more slowly in
Canada than in the United States, even though the
economies of the two countries are growing at a sim-

ilar rate (North American Energy Working Group,
2006). As noted earlier, increased demand would be
expected to lead to increased stress on the system, and
less demand growth would be expected to correspond
to better results.

4.2. Event-Level Analyses

In this section, we present the results of weighted
least squares regression models that use characteris-
tics of each event, such as cause, season, and a proxy
for population density, to gain a better understanding
of the factors that affect the number of customers lost
and duration of an outage.

4.2.1. Number of Customers Lost During an Outage

The first analysis refers to number of customers
lost, and the first issue explored is whether an inci-
dent has zero or nonzero customers lost and the fac-
tors that affect this outcome. As mentioned earlier,
these analyses used logistic regression. The U.S. data
suggest that there is little difference in the distribu-
tion of logged total customers served by a utility for
incidents with nonzero customer loss versus for inci-
dents with zero customer loss. As might be expected
of apparently more serious incidents, longer incidents
are associated with nonzero customer loss. Also, inci-
dents in more densely populated states are more likely
to have nonzero customer loss. In addition, there is
a strong pattern where incidents earlier in time are
more likely to have zero customer loss.

The other potential predictors for the number of
customers lost during an outage are season and cause
of the outage. In the United States, zero loss inci-
dents are more common in the spring (26.3%) and
autumn (21.3%), and less common in the summer
(15.3%) and winter (13.9%). These are not, however,
very strong effects. Weather-related incidents are very
likely to have nonzero customer loss, no doubt at least
in part because of the disruption of overhead trans-
mission and distribution lines by fallen trees (which
can occur in either summer or winter storms), and
are not fixed quickly or at least before customers
are affected. Capacity shortage, system protection,
and unknown causes are also strongly associated with
nonzero customer loss, but this is based on far fewer
incidents. Equipment failure is noticeably less related
to nonzero customer loss (while also having a large
number of incidents). More atypical causes that are
less associated with nonzero customer loss include
fire, human error, natural disaster, and operational er-
ror; crime, demand reduction, and third-party cause
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have zero customer loss rates more than 50% (al-
though again, based on few incidents).

For the U.S. model, logged duration, logged pop-
ulation density, a time trend (days since 1990), and
cause are significant predictors of whether an event
is associated with zero or nonzero customer loss, but
season is not. The coefficients produced by the model
have the following interpretations. A 1% increase in
the duration of an incident is associated with an es-
timated 0.3% decrease in the odds that an incident
will have zero customer loss, holding all else in the
model fixed. A 1% increase in the state population
density is associated with an estimated 0.6% decrease
in the odds that an incident will have zero customer
loss, holding all else in the model fixed. The estimated
annual decrease in the odds of an event having zero
customer loss is 11.3%, holding all else in the model
fixed. Finally, given the other predictors, crime, de-
mand reduction, and third-party cause are strongly
associated with zero customer loss, while operational
error, system protection, and weather are strongly as-
sociated with nonzero loss.

The analysis of the Canada data is based on fewer
observations. Unfortunately, for 17 of the incidents, a
customer loss value was not available (and hence it
can’t be known if the customer loss was zero or not). In
addition, for 26 other incidents, (logged) duration was
not available. Together, this means that the Canada
model is based on only 55 data points.

For these data, logged total customers served by
the utility has an inverse relationship with the proba-
bility that an outage has zero customer loss; a 1% in-
crease in the customer base is associated with a 1.1%
decrease in the odds that an incident has a zero cus-
tomer loss. In contrast, in the United States logged
total customers served by the utility did not appear
in the corresponding (simplified) logistic regression
model. As was true in the United States, longer out-
ages are associated with smaller likelihood of zero
customer loss; a 1% increase in duration is associ-
ated with a 0.5% decrease in the odds that an out-
age has zero customer loss. In contrast to the United
States, outages in denser areas of Canada (provinces
rather than states here) are associated with a higher

Table II. Differences in Relationships in

the United States and Canada Data

Between Predictors and the Probability

that An Incident Has Zero Customer

Loss

Effect United States Canada

Logged total customers No relationship Inverse relationship

Logged population density Inverse relationship Direct relationship

Time (days since 1990) Inverse relationship Direct relationship

Primary cause Weather lower probability

than equipment failure

Weather higher probability

than equipment failure

chance of it being a zero customer loss incident, as
a 1% increase in population density is associated
with a 1.4% increase in the odds of having zero cus-
tomer loss, holding all else fixed (the relationship was
in the opposite direction in the U.S. data). As was
noted earlier, in direct contrast to the situation in the
United States, zero customer loss incidents are be-
coming more common in Canada, corresponding to
an estimated 31.5% annual increase in the odds that
an outage has zero customer loss, given the other pre-
dictors. Winter and especially summer incidents are
less likely to have zero customer loss, although this
does not appear to be statistically significant. Com-
pared to the “other” category, given the other predic-
tors, crime and weather are more likely to occur with
zero customer loss incidents, while equipment failure
and human error are less likely. These are not very
similar to the patterns in the U.S. data.

Table II summarizes the differences between the
two countries with respect to the model in terms of
the relationship with the probability that an incident
has zero customer loss.

The second aspect of customer loss explored is the
factors related to the number of customers lost dur-
ing an outage given that one or more customers are
lost. Weighted least squares regression was used to
model the (logged) number of customers lost, given
that that number is nonzero. Figs. 3–8 describe the
observed relationships for the U.S. and Canada data,
with loess nonparametric regression curves superim-
posed on the plots in Figs. 3 and 4 (Simonoff, 1996,
ch. 5). Total customers refer to the total number of
customers served by a utility or utilities affected by an
outage; note that this is typically much smaller than
the number of households or individuals affected by
an outage, since it includes industrial customers and
other business establishments, and an entire apart-
ment building can be recorded as a single customer.

The primary important predictors of customers
lost in the U.S. data are total number of customers
served by a utility and primary cause. A 1% increase in
total customers is associated with a 0.18% estimated
increase in customers lost, holding all else in the model
fixed. In contrast, in Canada, having more customers
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Fig. 3. Plots of logged customers lost versus event characteristics in the United States with loess lines superimposed on plots.
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Fig. 4. Plots of logged customers lost versus event characteristics in Canada with loess lines superimposed on plots.
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Fig. 5. Side-by-side boxplots of logged

customers lost separated by season, U.S.

data.

served is associated with having fewer customers lost,
although the relationship is very weak (and not close
to statistical significance). The relationships between
customers lost and duration are not significantly
different in the two data sets, with a joint estimate
implying that a 1% increase in duration is associated
with a 0.2% increase in customer loss. Further, while
there is no evidence of a time trend in customer loss
in the U.S. data, in the Canada data, given the other
predictors, customer loss is decreasing at an estimated
29.5% annual rate.

Customer losses are higher for natural disaster,
crime, unknown causes, and third party, and lower for
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Fig. 6. Side-by-side boxplots of logged

customers lost separated by season,

Canada data.

system protection, capacity shortage, and equipment
failure, holding all else in the model fixed. It is inter-
esting to note that the largest customer losses are com-
ing from causes that are clearly beyond the control of
the utility, while the smallest losses are coming from
causes that are internal to the utility, perhaps suggest-
ing that oversight and preparation at the plant level
can be effective in reducing the effects of incidents. In
the Canada data, there is also a primary cause effect
with equipment failure, human error, and system pro-
tection having generally higher customer losses, and
crime and weather having smaller losses. The boxplots
shown in Figs. 5–8 were constructed so that the width
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Fig. 7. Side-by-side boxplots of logged

customers lost separated by primary

cause, U.S. data.

of the box is proportional to the square root of the
sample size for that group, so the wider the box, the
more information there is for that group. It is evident
that most incidents are either weather related or due
to equipment failure, so effects related to these causes
have the largest practical effect on the public. There
is little evidence of a seasonal effect in the U.S. model,
whereas in the Canada model a marginally significant
season effect is that fewer customers are lost during
the summer.
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Fig. 8. Side-by-side boxplots of logged

customers lost separated by primary

cause, Canada data.

Table III summarizes the differences between the
two countries with respect to the model in terms of the
relationship with the number of customers lost, given
that it is nonzero.

The incident-level analyses reinforce that the se-
riousness of the outcomes of incidents in Canada has
been decreasing over time, while it has been increas-
ing or staying the same in the United States. The ear-
lier arguments about potential reasons why the num-
ber of more serious incidents has not been growing in
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Table III. Differences in Relationships in

the United States and Canada Data

Between Predictors and the Expected

Customer Loss, Given that it is Nonzero

Effect United States Canada

Logged total customers (Weak) direct relationship Inverse relationship

Time (days since 1990) No relationship Inverse relationship

Season No relationships Customer loss lower in

spring and summer

Primary cause Weak relationship, other

than crime having higher

values

Equipment failure and

human error have higher

values

Canada apply here as well: the geographic distribu-
tion of the incidents in Canada is changing over time,
Canadian hydroelectric power plants have more ex-
perience with long-distance power transfers than do
U.S. plants, and electricity demand in Canada is grow-
ing at a slower rate than in the United States.

4.2.2. Duration of an Outage

The observed relationships for duration of an out-
age are described in Figs. 9–14 for the U.S. and Canada
data.

As Figs. 9 and 10 show, there is little evidence of a
relationship between logged duration and logged to-
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Fig. 9. Plots of logged duration versus event characteristics, U.S. data.

tal customers served by an affected utility. There is
evidence of a positive relationship with logged state
population density (ignoring the two relatively short
events at the very high population density level in
Fig. 9). There is weak evidence of the time trend on
duration in the United States, but little evidence in
Canada. There is some evidence of a season effect,
with winter and spring events longer and autumn and
summer events shorter in both countries. There is a
clear relationship with primary cause of an outage. In
the U.S. data, the two most common causes, equip-
ment failure and weather, are very different, with the
former associated with shorter events and the latter
associated with longer ones. In the Canada data, crime
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Fig. 10. Plots of logged duration versus event characteristics, Canada data.

has noticeably longer incidents than the other causes.
Overall, incidents are much shorter in Canada than
they are in the U.S.; the median duration in the U.S.
(7.7 hours) is almost ten times that in Canada (0.8
hours).
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Fig. 11. Side-by-side boxplots of logged

duration separated by season, U.S. data.

The results of the WLS model for the U.S. data
imply that a 1% increase in population density is as-
sociated with a 0.33% increase in duration, holding
all else in the model fixed. The season effect is that,
holding all else in the model fixed, winter events have
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duration separated by season, Canada

data.

expected duration that is 2.25 times the duration of
summer events, with autumn and spring in between.
Presumably, this has something to do with issues such
as the difficulty in traveling to downed power lines in
snow and ice.

Holding all else fixed in the U.S. model, inci-
dents caused by human error, natural disaster, de-
mand reduction, and equipment failure tend to be
shorter, while those caused by system protection,
third-party, weather, and unknown causes tend to be
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Fig. 13. Side-by-side boxplots of logged

duration separated by primary cause, U.S.

data.

longer. Considering that more than 3/4th of the events
are caused by equipment failure or weather, the con-
trast between the two is particularly important (events
caused by weather are expected to last more than five
times longer than those caused by equipment failure,
holding all else in the model fixed).

The pattern of durations over time in the U.S.
model is worth further comment. A regression
of logged duration on time alone implies an esti-
mated 11.6% annual increase in duration. Figure 15
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Canada data.

shows a loess curve for the estimated expected du-
ration using these incident-level data. Up until 1994,
durations were getting shorter. This turned around
in 1995, and for a few years the average duration
went up 15–25% annually. This was followed by a
long period (1998–2001) of fairly stable growth of 10–
20%. Finally, from 2002 onward, average durations
have started increasing again at a high 30–40% rate.
Thus, the constant estimate of 11.6% annually ob-
tained from the regression model actually seems to
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Fig. 15. Loess curve for estimated

expected duration over time.

mask some very different periods in average duration
change.

The time variable is still highly significant even if
season, population density, and total number of cus-
tomers are added as predictors. However, when pri-
mary cause is added, its significance disappears, which
shows that it is the primary cause effect that is driving
the apparent time trend effect.

Recall that more than three-fourths of the in-
cidents are either equipment failure or weather
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related, and that incidents caused by equipment fail-
ure tend to be shorter, while weather-related ones
tend to be longer. In fact, weather-related inci-
dents are becoming more common, while equipment-
failure-related ones are becoming less common, and
this accounts for much of the overall pattern of in-
creasing average durations by season. Since the mid
1990s, relatively speaking, equipment failures are go-
ing down and weather incidents are going up, while
before that the opposite pattern was occurring. This
corresponds exactly to the drop in durations up to
1995, and the increase since then noted earlier. Thus, it
would seem that further study of why equipment fail-
ures are becoming less common (relatively speaking)
and weather-related events are becoming more com-
mon is warranted. At least part of the latter pattern is
probably not related to the power grid at all. On the
basis of the data from U.S. Department of Homeland
Security (2006), officially declared federal disasters
have been increasing at a rate of roughly 2.8% annu-
ally since the 1950s; most of those are weather related
(flooding, hurricanes and tropical storms, tornadoes,
winter storms), so an increase in weather-related out-
ages is not surprising (although this would not explain
why weather-related outages were dropping before
the mid 1990s).

Unlike the U.S. model, the Canadian model for
duration shows little evidence of any relationships at
all. The primary cause effect is damped down be-
cause while crime apparently has longer incidents,
that cause also had more variability in durations. A
simplified version of the model with only cause and
season suggests that each effect is only weakly signif-
icant. The season effect implies that, holding all else
in the model fixed, winter and spring events have an
expected duration that is roughly 2.5 times the dura-
tion of autumn events. The adjusted means for pri-
mary cause show that, holding all else fixed, incidents
caused by crime tend to be longer.

5. PREDICTING OUTAGE OUTCOMES

The models described in the previous section
provide useful information about the factors related
to the seriousness of a power outage. These results
can also be used to construct predictions for outage
outcomes based on different scenarios, and thereby
provide probabilistic assessments of the risks associ-
ated with these events. By examining predicted du-
ration and customer loss under different conditions,
it is possible to map out possible outage outcomes.
One application of these results is to predict out-

comes of potential terrorist attacks on the electric
grid. Although there are no data on such attacks for
the United States or Canada, expert panels may be
able to determine what causes are likely to be sim-
ilar to those of a terrorist attack. Hence, scenarios
that predict the outcome of such attacks in terms of
numbers of customers lost and duration of an outage
can be constructed. These outage characteristics can
then be used to estimate economic costs associated
with business losses for a geographical area such as a
city. The models allow the user to predict outage char-
acteristics for a city such as New York, for example,
by including properties such as state population den-
sity and the number of customers served by the local
utility. In addition, differences in outcomes based on
the season of a potential terrorist attack can also be
included in a scenario.

In this section, we construct scenarios for cities
with characteristics like those of New York and
Toronto. These two cities provide an interesting con-
trast, since they are not only from different countries,
but the structure of the city power grid is noticeably
different: New York has relatively few transmission
lines, while Toronto has many. Using the character-
istics of the utilities in these cities, the estimated du-
ration of an incident, separated by season and cause,
is determined for each city using the weighted least
squares model described in the previous sections.
Since (logged) duration is an important predictor for
customer loss, these estimated durations are then used
as inputs to the logistic regression model discussed to
estimate the probability that there is zero customer
loss. Finally, the estimated (logged) duration value,
along with the characteristics of the utility, are used
to estimate the number of customers lost, given there
is nonzero customer loss, using the weighted least
squares model.

In addition to estimated expected values, these
methods allow us to construct 50% prediction inter-
vals for duration and for customer loss (given that the
loss is nonzero) for any cause and season for the two
cities. These intervals give the central range within
which there is 50% chance of the duration or cus-
tomer loss falling in an individual incident.

5.1. Duration of an Incident

First, consider intervals for duration. Fig. 16
shows 50% prediction intervals for the duration of
an incident in New York City in the summer. The hor-
izontal tick on each line is the estimated expected du-
ration for a summer New York City outage with that
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Fig. 16. Prediction intervals for duration

of summer outages in New York City.

cause, while the vertical line gives the 50% prediction
interval. The figure shows that the cause of the inci-
dent is related to both the level of duration (e.g., hu-
man error and demand reduction are associated with
shorter incidents and weather and unknown cause are
associated with longer ones) and the variability in du-
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of winter outages in New York City.

ration (e.g., third-party cause and system protection
have similar expected durations, but durations of in-
cidents caused by system protection are much more
variable).

Figure 17 shows intervals for New York City out-
ages during the winter separated by cause. The pattern
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Table IV. Estimated Durations for Different Types of Incidents in

New York City

Spring Summer Autumn Winter

Capacity shortage 12.5 8.5 11.9 19.2

Crime 12.8 8.7 12.2 19.6

Demand reduction 3.9 2.7 3.7 6.0

Equipment failure 6.3 4.3 6.0 9.7

Fire 9.8 6.7 9.3 15.0

Human error 1.3 0.9 1.3 2.0

Natural disaster 2.5 1.7 2.4 3.8

Operational error 7.2 4.9 6.8 11.0

System protection 16.4 11.2 15.5 25.1

Third party 19.4 13.2 18.4 29.7

Unknown 70.7 48.3 67.2 108.5

Weather 32.0 21.8 30.4 49.1

of relative estimates and prediction intervals is the
same as for the summer incidents, but the averages
and intervals are shifted up by a factor of two, re-
flecting that outages are longer on average during the
winter.

Table IV summarizes the estimated expected du-
rations (in hours) for New York City scenarios.

Fig. 18 shows corresponding 50% prediction in-
tervals for the duration of an incident in Toronto in the
summer. It is apparent that predicted durations are
similar (and relatively short) for all causes other than
crime; for crime-related incidents both the expected
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Fig. 18. Prediction intervals for duration

of summer outages in Toronto.

duration and its variability are high, yielding a wide
prediction interval.

Fig. 19 shows intervals for Toronto outages during
the winter by cause. The pattern of relative estimates
and prediction intervals is the same as for the summer
incidents, but the averages and intervals are shifted up
by roughly 40%, reflecting that outages are longer on
average during the winter.

Table V summarizes the estimated expected du-
rations (in hours) for Toronto scenarios.

5.2. Customer Loss of an Incident, Given
that it is Nonzero

Using the estimated durations as inputs for the
model, prediction intervals for customer loss (given
that the loss is nonzero) can also be constructed. These
are useful in assessing the economic impact of an out-
age, although this is only a crude approximation, given
the differing economic impacts of an outage for differ-
ent classes of customers. The intervals for a city with
characteristics like those of New York City are shown
in Figs. 20 and 21. Once again there are considerable
differences in both level and variability depending on
the cause of the incident. The intervals for winter out-
ages are centered at higher values, but this is an in-
direct, rather than direct, effect: while there is little
difference in expected customer loss for summer and
winter given the other predictors, outages are longer
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Fig. 19. Prediction intervals for duration

of winter outages in Toronto.

on average during the winter than during the sum-
mer, and longer outages are associated with more cus-
tomers being affected.

Two values are needed to estimate the number of
customers lost in an outage: the estimated probabil-
ity that an incident will have zero customer loss and
the expected customer loss given that it is nonzero.
Table VI gives estimated probabilities of zero cus-
tomer loss for New York City outages.

Table VII provides the estimated expected cus-
tomer losses (given nonzero customer loss) for New
York City scenarios.

These estimates can then be combined to esti-
mate the overall (unconditional) expected number of
customers lost for a given scenario. If p is the proba-
bility of zero customer loss, the expected number of
customers lost is

Table V. Estimated Durations for Different Types of Incidents

in Toronto

Spring Summer Autumn Winter

Capacity shortage 0.4 0.3 0.2 0.5

Crime 26.2 22.9 12.7 33.0

Equipment failure 1.8 1.5 0.9 2.2

Human error 1.0 0.9 0.5 1.3

Operational error 0.5 0.4 0.2 0.6

System protection 3.2 2.8 1.5 4.0

Third party 5.5 4.8 2.6 6.9

Unknown 1.6 1.4 0.8 2.0

Weather 1.0 0.8 0.5 1.2

E(Customers lost) = (p)(0) + (1 − p)

× (E[Customers lost given

× nonzero customer loss]).

So, for example, since an incident in New York City
during the winter caused by crime has zero customer
loss with probability p = 0.447 and nonzero loss with
probability 1 − p = 0.553, and an expected 1,604,029
customers lost if there is nonzero loss, the overall ex-
pected customers lost for such an incident is given by

E(Customers lost) = (.447)(0) + (.553)(1,604,029)

= 887,028.

The corresponding intervals for a city with character-
istics like those of Toronto are shown in Figs. 22 and 23.
Once again there are considerable differences in both
level and variability depending on the cause of the
incident, with outages caused by system protection
higher in both expected loss and its variability. The in-
tervals for winter outages are centered at much higher
values (more than 10 times higher).

Table VIII gives estimated probabilities of zero
customer loss for Toronto outages.

Table IX provides the estimated expected cus-
tomer losses (given nonzero customer loss) for
Toronto scenarios.

Since an incident in Toronto during the winter
caused by crime has zero customer loss with prob-
ability p = 0.971 and nonzero loss with probability
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Fig. 20. Prediction intervals for customer

loss (given that it is nonzero) of summer

outages in New York City.

1 − p = 0.029, and an expected 67,909 customers lost
if there is nonzero loss, the overall expected customers
lost for such an incident is given by

E(Customers lost) = (.971)(0) + (.029)(67, 909)

= 1, 969,

much lower than in New York City.
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6. CONCLUSIONS

A critical need exists to develop the means to
provide decision tools to estimate the consequences
of terrorist attacks against electric power systems as
part of the growing field of risk analysis for terror-
ism events. This is particularly difficult in the United
States given the very few terrorist attacks that have
disabled electric power systems, and none that have
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Table VI. Estimated Probabilities that Customer Loss Will Be

Zero for Different Types of New York City Incidents

Spring Summer Autumn Winter

Capacity shortage 0.056 0.028 0.049 0.052

Crime 0.464 0.300 0.431 0.447

Demand reduction 0.575 0.401 0.542 0.558

Equipment failure 0.053 0.027 0.047 0.050

Fire 0.054 0.027 0.047 0.050

Human error 0.066 0.034 0.059 0.062

Natural disaster 0.132 0.070 0.117 0.124

Operational error 0.022 0.011 0.019 0.020

System protection 0.000 0.000 0.000 0.000

Third party 0.519 0.348 0.485 0.502

Unknown 0.039 0.019 0.034 0.036

Weather 0.008 0.004 0.007 0.007

actually directly targeted electric power. This arti-
cle has provided a framework for analyzing available
electrical outage data to gain a better understanding
of the factors that influence outcomes, such as the
number of customers lost and duration of an outage.
The statistical models used reinforce the importance
of probabilistic assessment of risk, whether that is
estimating the probability of zero customer loss, or
constructing prediction intervals within which outage
characteristics such as duration and customer loss are
predicted to fall with specified probability. Clearly,
such risk assessment also leads directly to issues of
risk management, such as in questions of resource
allocation.

The analyses were done for the United States
and Canada and the results show how the models can
be used to identify important differences for the two
countries. These patterns, besides being of interest in
and of themselves, highlight the need for general sta-
tistical models for probabilistic risk assessment, since
it is apparent that the consequences of outages differ

Table VII. Estimated Expected Loss

(Given that it is Nonzero) for Different

Types of New York City Incidents

Spring Summer Autumn Winter

Capacity shortage 42,984 25,448 31,998 30,434

Crime 2,265,524 1,341,245 1,686,511 1,604,029

Demand reduction 110,022 65,136 81,903 77,897

Equipment failure 135,641 80,302 100,974 96,036

Fire 200,667 118,800 149,381 142,076

Human error 137,347 81,313 102,244 97,244

Natural disaster 3,975,563 2,353,628 2,959,504 2,814,765

Operational error 186,627 110,488 138,930 132,135

System protection 216,197 127,994 160,942 153,071

Third party 1,255,536 743,308 934,651 888,941

Unknown 1,519,551 899,611 1,131,190 1,075,867

Weather 228,837 135,477 170,352 162,021

for incidents in different places, at different times, and
with different underlying characteristics.

First, at the level of overall trends in events over
time, the number of disturbances to the electric grid
increased over the period studied for both countries.
In the United States, the annual rate of increase was
estimated to be 7.2% and in Canada it was 8.2%.
However, while the number of events with nonzero
megawatt loss increased in the United States at an
annual rate of 10%, in Canada there was no evidence
of a time trend for these events. Similarly, the number
of events with nonzero customer loss increased in the
United States at an estimated annual rate of 14% but
in Canada the model provided little evidence of any
relationship with season or time for these events.

Second, the results of the event-level analyses can
provide insights into the dynamics underlying the fac-
tors affecting disturbances in each country. The re-
sults show that the dynamic is different in the two
countries. For example, in estimating the number of
customers lost during an outage, the model predicts
that in the United States there is a weak but direct
relationship with total number of customers served
by a utility. In Canada, the model suggests an inverse
relationship. In the U.S. model, there is no relation-
ship between customer loss and season, whereas in
the Canada model customer loss is lower in the spring
and summer. In modeling the duration of an event, the
results suggest that in the United States, outage dura-
tion was decreasing in the early 1990s and then started
to increase in the mid-1990s. This is due to the fact
that the relative frequency of the cause of the events
changed over time, with weather-related events be-
coming more common over time during this period
and equipment-related disturbances less so. Weather-
related events are associated with longer durations.
The Canada data, on the other hand, show little evi-
dence of any relationships.



568 Simonoff, Restrepo, and Zimmerman

Crime E H O S W

Causes

0

40000

80000

120000

C
u
s
to

m
e
r 

lo
s
s

50% prediction intervals for Toronto summer outages
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Third, the results of these models can provide in-
formation about outcomes such as expected customer
loss and duration of outages in different seasons and
for cities with different characteristics, and hence in-
form response to outages in both terror-related and
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nonterror-related circumstances. The results of the
50% prediction intervals shown in this article for cities
with characteristics like those of New York City and
Toronto are very different. For example, in terms of
outage duration, the results for New York City suggest
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Table VIII. Estimated Probabilities that Customer Loss Will Be

Zero for Different Types of Toronto Incidents

Spring Summer Autumn Winter

Capacity shortage 1.000 1.000 1.000 1.000

Crime 0.806 0.996 0.986 0.971

Equipment failure 0.525 0.987 0.948 0.898

Human error 0.806 0.996 0.986 0.971

Operational error 0.000 0.000 0.000 0.000

System protection 0.000 0.003 0.001 0.000

Third party 1.000 1.000 1.000 1.000

Weather 0.986 1.000 0.999 0.998

that the longest durations are to be expected from
weather events, unknown causes, and third parties.
In Toronto, the highest expected durations are from
crime-related events. In terms of customer loss, the
results for New York City suggest crime and natural
disasters could have the biggest impact. In Toronto
system protection, equipment failure, human error,
and crime have the highest impact.

These kinds of scenarios can be used as inputs into
risk management policies. The incident analysis based
on statistical regression modeling presented in this ar-
ticle can be used to provide inputs into economic val-
uation frameworks to estimate the potential impact of
a terrorist attack or a natural hazard on the electric-
ity infrastructure. Some of the causes associated with
electric outages are more likely to be similar to the
impact of a terrorist attack than others. The results
of these models can then be used to estimate poten-
tial economic costs, such as business losses, associated
with a terrorist attack. The advantage of the model
presented in this article for such purposes is that it can
be used for quick estimates and assessments (Zimmer-
man et al., 2005, 2007), although it should be noted
that such estimates could be considered worst-case
scenarios, since they would not reflect adaptive be-
havior of customers. This methodology can also com-
plement other frameworks of analysis such as input-

Table IX. Estimated Expected Loss (Given that it is Nonzero) for

Different Types of Toronto Incidents

Autumn Spring Summer Winter

Crime 241,937 39,187 5,451 67,909

Equipment failure 399,752 64,748 9,006 112,205

Human error 263,445 42,670 5,935 73,945

Operational error 7 1 0 2

System protection 2,896,406 469,131 65,256 812,982

Weather 16,419 2,659 370 4,609

output analysis (I-O) (Rose et al., 1997; Rose & Be-
navides, 1998; Haimes et al., 2005; Gordon et al., 2005)
and computable general equilibrium (CGE) models
(Rose & Liao, 2005) that have also been applied to
estimate the economic impacts of natural disasters or
terrorist events.

The data can be modified or tailored for specific
areas and season. Understanding the differences be-
tween the factors affecting outages in Canada and the
United States is also important because the electricity
grids of both countries are interdependent. For exam-
ple, between 1982 and 2002, U.S. annual imports of
electricity from Canada generally ranged between 20
and 50 billion kilowatthours (U.S. Department of En-
ergy, 2005). Hence, outages in one country can have
important impacts on the other. The differences in the
patterns in the United States and Canada also have
implications for outage patterns in the future, as in-
terdependencies grow between the two countries.

The regression models discussed in this article
could be improved if more precise data were avail-
able. Examples of potential improvements include us-
ing temperature on the day of the outage instead of
season and a better proxy for local population den-
sity. It is important to note that the data on electric
disturbances are collected by NERC on a voluntary
basis. Utilities are not required to provide this infor-
mation. In addition, it is not possible to know if the
way the data are reported has been consistent over
time. In conducting studies of events over time in the
electricity sector an important factor affecting causes
and outcomes is changes in the regulatory environ-
ment under which utilities operate. Including these
changes in the regression models could be a future
research direction in this field. In addition, it is impor-
tant for more detail to be included in future reports
about outage incidents in order to link causes of out-
ages more closely to terrorist attack circumstances.
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