Integrated Moving Averages

The Integrated Moving Average (IMA) is often a useful model for economic time series. It is
related to "exponential smoothing”, a simple method for forecasting time series, which will be discussed
later in more detail. An integrated moving average is simply an ARIMA model with p =0. That is, the
IMA(d,q) model is the same as the ARIMA (0,d,q). The reason for the name "integrated moving aver-
age" should be clear: The IMA(d,q) is a moving average which has been integrated d times. Here, we

will study the simplest case, the IMA(1,1), also known as ARIMA (0,1,1). The model can be written as
X —X_1=& —aA &1 ,

where a is between —1 and 1 (because of the invertibility condition). Since d=1, the series {x} is
nonstationary. So strictly speaking, the series has no mean. Nevertheless, it is useful to think of {x} as
fluctuating about a local mean, X, which changes with t. If we define o.=1-a, then it can be shown

that {x} has the AR () representation
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which is the same as saying that
X =X_1+€& , )
where
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is the local mean at time t—1. We see from (3) that the local mean, X;_; is an Exponentially Weighted

"Moving Average" (EWMA) of previous values of x; with weights
o, o(l-o) , a(l-0)? , o(l-o)®

which decay towards zero geometrically, that is, exponentialy fast. It is also interesting to note that

these weights sum to 1, since
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where we have used the formula for the sum of a geometric series.

It can also be shown that {x;} has the MA (=) representation

X'[ =81 + 0o Zet_k . (4)
k=1

Since from (2) we know that X, =%_; +¢;, it follows that
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Forecasting

Since X1=%; +&,1 from Equation (2), the best one-step forecast is %, the current local mean.
This can be contrasted with the case of the random walk, where the best forecast is the most recent

obserevation, x;. It can be shown that
=0 +(1-0)% (6)

Thus, each new loca mean is a compromise (weighted average) of the previous local mean and the
most recent observation. Formula (6) shows how the new observation x; influences the value of the
local mean, and is very useful for forming forecasts recursively in "real time": As new observations
become available, we can simply update our local mean, and thereby obtain the new one-step forecast,

without doing any long calculations.

To obtain h-step forecasts, we note from the MA (<) representation (4) that
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so the best h-step forecast is
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where we have used equation (5) for the last step. Thus, we have shown that
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so that the best forecast for any lead time is just the current local mean, X;.

To see this in another way, note from Equations (4) and (5) that
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Thus,
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so that as we move into the future from time t (by letting h increase), the process will diverge from the

current local mean x; according to the "random walk"
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which has zero mean and is not forecastable.



