
Integrated Moving Averages

s

r

The Integrated Moving Average (IMA) is often a useful model for economic time series. It i

elated to "exponential smoothing", a simple method for forecasting time series, which will be discussed

e
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later in more detail. An integrated moving average is simply an ARIMA model with p = 0. That is, th

MA (d ,q ) model is the same as the ARIMA (0,d ,q ). The reason for the name "integrated moving aver-

w

age" should be clear: The IMA (d ,q ) is a moving average which has been integrated d times. Here, we

ill study the simplest case, the IMA (1,1), also known as ARIMA (0,1,1). The model can be written as

x − x = ε − a ε ,t t −1 t t −1
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where a is between −1 and 1 (because of the invertibility condition). Since d =1, the series {x } i

onstationary. So strictly speaking, the series has no mean. Nevertheless, it is useful to think of {x } as
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uctuating about a local mean, xd which changes with t . If we define α = 1 − a , then it can be shown

that {x } has the AR (∞) representationt
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t −k tx Σ= α (1 − α) x + ε , (1)

which is the same as saying that

x = xd + ε , (2)

where
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xd = α (1 − α) x (3)
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is the local mean at time t −1. We see from (3) that the local mean, xd is an Exponentially Weighte

"Moving Average"" (EWMA) of previous values of x with weightst
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α , α (1 − α) , α (1 − α) , α (1 − α) . . .

hich decay towards zero geometrically, that is, exponentially fast. It is also interesting to note that

these weights sum to 1, since
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.where we have used the formula for the sum of a geometric series

It can also be shown that {x } has the MA (∞) representationt

t t
k =1

∞

t −kx Σ= ε + α ε . (4)

Since from (2) we know that x = xd + ε , it follows thatt t −1 t

t −1
k =1
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t −kx Σd = α ε . (5)
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Forecasting

ince x = xd + ε from Equation (2), the best one-step forecast is xd , the current local mean.

T

t +1 t t +1 t

his can be contrasted with the case of the random walk, where the best forecast is the most recent

obserevation , x . It can be shown thatt

t t t −1xd = α x + (1 − α) xd . (6)
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Thus, each new local mean is a compromise (weighted average) of the previous local mean and the

ost recent observation. Formula (6) shows how the new observation x influences the value of thet
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local mean, and is very useful for forming forecasts recursively in "real time": As new observation

ecome available, we can simply update our local mean, and thereby obtain the new one-step forecast,

without doing any long calculations.

To obtain h -step forecasts, we note from the MA (∞) representation (4) that

x = ε + α ε ,t +h t +h
k =1

∞

t +h −k

so the best h -step forecast is

Σ

f = α (ε + ε + ε + . . . ) = α ε = xd ,
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twhere we have used equation (5) for the last step. Thus, we have shown tha

f = xd ,t , h t
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.so that the best forecast for any lead time is just the current local mean, xdt

To see this in another way, note from Equations (4) and (5) that

x − xd = ε + α ε − α ε k

∞

t +1−
1

∞

t +h −k
k =1

t +h t t +h
k =
Σ Σ
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= ε + α ε .t +h
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Thus,
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x = xd + α ε + ε ,
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so that as we move into the future from time t (by letting h increase), the process will diverge from the

current local mean xd according to the "random walk"t

k =1

h −1

t +k t +hα Σε + ε ,

which has zero mean and is not forecastable.


