Germs, Social Networks and Growth

Alessandra Fogli¹ Laura Veldkamp²

¹University of Minnesota
²NYU Stern

Summer 2012
Motivation

Large literature explaining differences in output across countries:

- Political, legal, financial institutions
- Geography, climate and factor endowments
- Technological progress and technology diffusion

All abstract from the potential role of “social structure”
Social Structure

Definition: The pattern of social ties between people in an economy; a social network.

Our main questions:
- Do differences across countries in social structure matter for macroeconomic outcomes?
- How might they matter?
- Where do they come from?
Social Networks

- A social network: the set of all individuals in the economy (“nodes”) and their relationships (“ties” or “edges”).
- How individuals make friends determines the social network. Aggregate features of this network constitute social structure.
- The structure of a network affects the speed of technology diffusion: differences in social structure translate into differences in the speed of diffusion of ideas in the economy.
Key feature: Collectivism in networks

- Dimension of variation: tendency to create tightly knit groups (collectives).
- Collective: a set of 3 mutually connected nodes.
- Example: How collectives in networks can affect diffusion.
Germs, Social networks and Growth

Introduction
Related Work
Fixed Network Model
Evolutionary Network Model
Calibration
Estimation
Conclusion
Germs, Social networks and Growth

Introduction
Related Work
Fixed Network Model
Evolutionary Network Model
Calibration
Estimation
Conclusion
Introduction

Germs, Social networks and Growth

Related Work

Fixed Network Model

Evolutionary Network Model

Calibration

Estimation

Conclusion
Germs, Social networks and Growth

Introduction

Related Work

Fixed Network Model

Evolutionary Network Model

Calibration

Estimation

Conclusion
Germs, Social networks and Growth

Introduction

Related Work

Fixed Network Model

Evolutionary Network Model

Calibration

Estimation

Conclusion
Germs, Social Networks and Growth

Introduction

Related Work

Fixed Network Model

Evolutionary Network Model

Calibration

Estimation

Conclusion

10 - DONE
Key Ideas

- If some social structures slow down the diffusion of ideas,

 Why do they emerge in the first place?

- Two factors that affect development and spread through human contact:

 Germs and Ideas

- Social networks that inhibit the diffusion of ideas also protect people from diseases.
Outline

- Related work
 - Compare diffusion in 2 exogenous networks: 1 individualist and 1 collectivist (isolate this dimension)
 - Endogenize the network: Evolutionary model with high and low disease explains why networks form.
 - Data: Collectivism, pathogens, tech diffusion
 - IV estimation: Use the difference between socially transmittable and zoonotic disease to instrument for social structure. Estimate effect on technology.

Technology spillovers: Eeckhout and Jovanovic (2002). Our network puts more structure on matches or spillovers.

While mass media play a major role in alerting individuals to the possibility of an innovation, it seems to be personal contact that is most relevant in leading to its adoption. Thus, the diffusion of an innovation becomes a process formally akin to the spread of an infectious disease.

(Kenneth Arrow, 1969 AEA presidential address)
Fixed Network Model

- Time discrete and infinite.
- N agents, located on a circle, are indexed by their location i. 2 states:
 - health status: healthy ($\psi_i(t) = 0$) or sick ($\psi_i(t) = 1$)
 - technology level: $A_i(t)$
- Network: A matrix N of 1’s and 0’s. $n_{ij} = 1$ means that i, j connected.
- A collective: When friends i and j have a mutual friend k. $n_{ij} = n_{ik} = n_{jk} = 1$
Healthy agents produce A_{it}. They survive to the next period with probability ξ.

Sick agents have zero productivity ($A_i(t) = 0$) and die at end of period.

Initial fraction S of sick people.

Each sick person transmits the disease to each friend with probability π.

An agent who dies is replaced. The new agent i, born at date t, has same network and $A_i(t-1) = 0$.
Technology advances in 2 ways:

- Poisson arrival of new ideas. At the start of each period, with probability λ agent j advances his technology by one step:

$$
\ln(A_j(t + 1)) = \ln(A_j(t)) + \delta
$$

- Agents can also learn from others in their networks. If person j is connected to person k and $A_j(t) > A_k(t)$ then with probability ϕ, k will learn what j knows:

$$
A_k(t + 1) = A_j(t)
$$
Fixed Network Model:

We compare diffusion in 2 networks.

- **Collectivist network** (N1): Hold the number of connections fixed (4). Everyone connected. Maximize collectives.

- **Individualist network** (N2): The minimal deviation from collectivist network that achieves zero collectives.

Key result: Collectives slow diffusion

- Collectives increase network diameter.

- Agents are more likely to infect friends that have already been infected by other friends.
Fixed Network Model: Diffusion Results

Let $\Psi_j(t) = \min\{s \geq t : \psi_j(s) = 1\}$ and $\alpha_j(t) = \min\{s \geq t : A_j(s) > A(t)\}.$

Result

If $\pi = 1$ and $\sum_j \psi_j(0) = 1,$ then the average lifetime $E_j[\Psi_j(0)]$ is longer in the collectivist network (1) than in the individualist network (2).

If $\phi = 1,$ then the average discovery time $E_j[\alpha_j(0)]$ is slower in the collectivist network (1) than in the individualist network (2).

Collectivist networks prolong lifetimes, but slow technology diffusion.
Suppose that at t, a collectivist network (N1) and an individualist network (N2) have the same $A_j(t) \forall j$. Then the probability that the next new idea arrival will increase the technological frontier is larger in N2 than N1.

This is why an individualist network can achieve a higher rate of growth and a higher income in the long-run.
An evolutionary model of network formation

Same structure as before, except

- Individuals can be of two types: collectivist $\tau_j(t) = 0$ and individualist $\tau_j(t) = 1$.
 - Collectivist in location j is linked to $j-1$, $j+1$ and $j+2$
 - Individualist in location j is linked to $j-1$, $j+1$ and $j+4$
 - They can both be linked to $j-2$ and/or $j-4$ depending on types of agents in those locations.
- When agents die (from disease or old age), new agents inherit the type and technology of the friend in their parent's network with highest A. \Rightarrow Successful types are passed on.
Germs, Social networks and Growth

Introduction
Related Work
Fixed Network Model
Evolutionary Network Model
Calibration
Estimation
Conclusion
Long run results

Result

With probability 1, the network becomes homogeneous: \(\exists T \) s.t. \(\tau_j(t) = \tau_k(t) \) \(\forall k \) and \(\forall t > T \).

Result

With probability 1, the disease dies out: \(\exists T \) s.t. \(\psi_j(t) = 0 \) \(\forall j \) and \(\forall t > T \).

- If individualist = 0 \(\Rightarrow \) Stay collectivist forever
- If individualist > 0 \(\Rightarrow \) Likely converge to individualist

(learns faster and pass on type more often but not certain b/c random death)
Calibrate the model

- Does higher disease ⇒ collectivism?
- How much can networks affect growth?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial disease prevalence</td>
<td>$E[\psi_j(0)]$</td>
<td>0.5%</td>
</tr>
<tr>
<td>Disease transmission probability</td>
<td>π</td>
<td>32%</td>
</tr>
<tr>
<td>Innovation productivity increase</td>
<td>δ</td>
<td>30%</td>
</tr>
<tr>
<td>Technology transfer probability</td>
<td>ϕ</td>
<td>50%</td>
</tr>
<tr>
<td>Technology arrival rate</td>
<td>λ</td>
<td>0.25%</td>
</tr>
<tr>
<td>Exogenous death rate</td>
<td>ξ</td>
<td>1/70</td>
</tr>
</tbody>
</table>
Illustrative example: Diffusion in fixed networks

Figure: How disease and technology spread through networks.

The darkest boxes indicate individuals who acquired the disease in period t and therefore have zero time-t productivity. Warmer colors indicate higher levels of technology. Note: these are not calibrated levels of disease or tech arrival.
Calibration results: Comparing fixed networks

Figure: Average disease prevalence and productivity

- Avg growth rate in individualist network: 2.6%
- Avg growth rate in collectivist network: 2.0%
Numerical example: Network Evolution

Long run network structure depends on whether disease or individualist trait dies out first.
Example with 1 run:

Figure: Long run network structure
Evolutionary model: Higher disease prevalence makes collectivist network more likely.

The probability that the economy converges to a zero-disease or purely collectivist steady-state at each date.
Theory summary

- Initial differences in disease govern social structure, which persists even after diseases disappear.
- The collectivist economy grows .6% less per year. A large quantitative effect over the long-run.
- Next step: Can we find causal evidence of an effect of social structure on income? How big?
Empirical strategy

- Instrument suggested by theory: historical prevalence of pathogens. But pathogens depend on technology and disease directly affects productivity.

\[
A = \alpha_1 + \alpha_2 S + \epsilon \\
S = \gamma_1 + \gamma_2 A + \gamma_3 G_H + \gamma_4 G_Z + \eta \\
G_i = \delta A + \varepsilon_i \quad i \in \{H, Z\}
\]

Problem: \(G_i\)'s show up in residual \(\epsilon\).

- Identifying assumption: \(E[(G_H - G_Z)\epsilon] = 0\)
- Our instrument: human–zoonotic pathogens.
 Idea: Both have the same relationship with \(A\), but only human-to-human pathogens affect \(S\).
Empirical measures

- **Social structure**
 - individualism index: constructed by sociologists to measure dependency of individuals from the group (varies between 0 and 100).

- **Innovation**
 - speed of technology diffusion from Comin and Mestieri (2012).

- **Germs**
 - prevalence of 9 of the deadliest communicable diseases: leishmanias, leprosy, trypanosomes, malaria, schistosomes, filariae, dengue, typhus and tuberculosis, from 1930 atlases of infectious diseases (on a 4 points scale).
Measuring Collectivism

- Two observable characteristics of collectivism
 1. An aversion to severing social ties
 Difficult to sustain collectives with changing ties.
 2. Cooperation and social influence
 Common friends enforce cooperation and social norms.

- Key factors that determine Hofstede’s individualism index
 1. Group cooperation (C)
 2. Importance of freedom (I)
 3. Importance of job satisfaction and location (I)
 Collectivists don’t change jobs or location much.
Constructing Disease Instruments

- Instrument 1: Difference in reservoir (diff_res)
 1. Reservoir is the long-term host of a pathogen.
 2. Human: leprosy, filariae
 3. Zoonotic: schistosomes, typhus
 4. Multi-host: leishmanias, trypanosomes, malaria, dengue, tuberculosis

 \[\text{diff_res} = \text{human} + \text{multi} - \text{zoonotic} \]

- Instrument 2: Standardized difference

 \[\text{std_res} = (\text{human} + \text{multi}) - \text{zoonotic} \times \frac{\text{std(human + multi)}}{\text{std(zoonotic)}} \]

- Robustness: Split by vector (diff and std)
Individualism and Germs

Total pathogen prevalence is a sum of all nine diseases.
First stage estimation

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Individualism (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Total pathogens</td>
<td>-2.73</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
</tr>
<tr>
<td>H+MH - zoonotic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>diff_res</td>
<td></td>
</tr>
<tr>
<td>H+MH - zoonotic</td>
<td></td>
</tr>
<tr>
<td>std_res</td>
<td></td>
</tr>
<tr>
<td>diff by vector</td>
<td></td>
</tr>
<tr>
<td>std_vec</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>77.10</td>
</tr>
<tr>
<td>R²</td>
<td>0.52</td>
</tr>
<tr>
<td>Observations</td>
<td>72</td>
</tr>
</tbody>
</table>

The table reports OLS estimates of the \(\gamma \) coefficients in \(S = \gamma_1 + \gamma_3 X + \eta \), where the \(X \) variables are listed in the first column of the table. Standard errors in parentheses. \(\ast \) denotes significance at 5% level.
Technology Diffusion and Individualism

Comin and Mestieri’s technology diffusion measure (vertical axis) plotted against Hofstede’s individualism index (horizontal axis).
Social Structure and Technology (main result)

<table>
<thead>
<tr>
<th>Instruments:</th>
<th>diff_res</th>
<th>diff_res_std</th>
<th>diff_vec_std</th>
<th>none (OLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td>Technology Diffusion Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualism</td>
<td>1.63</td>
<td>1.31</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.34)</td>
<td>(0.35)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Over-ID p-val</td>
<td>0.12</td>
<td>0.21</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.27</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>N</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>72</td>
</tr>
</tbody>
</table>

1 std dev increase in individualism (23.0) results in 16 more technologies, (34% of average tech level).
Controlling for other variables

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Technology Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Individualism</td>
<td>1.46*</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
</tr>
<tr>
<td>Population Density</td>
<td>0.040*</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
</tr>
<tr>
<td>Social Infrast</td>
<td>112.2*</td>
</tr>
<tr>
<td></td>
<td>(30.17)</td>
</tr>
<tr>
<td>Ethno-lingu fractionalz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease-adj life expect</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Capitalist (EcOrg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.43</td>
</tr>
<tr>
<td>Observations</td>
<td>62</td>
</tr>
</tbody>
</table>

All variables are included in the second stage and first stage regressions.
Estimating Effects on Output

<table>
<thead>
<tr>
<th>Dependent var:</th>
<th>Solow Residual</th>
<th>Output per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments:</td>
<td>diff_res_std</td>
<td>diff_res_std</td>
</tr>
<tr>
<td></td>
<td>pronoun, eng</td>
<td>pronoun, eng</td>
</tr>
<tr>
<td>Individualism</td>
<td>0.99 (0.40)</td>
<td>2.10 (0.45)</td>
</tr>
<tr>
<td>Over-ID p-val</td>
<td>0.78 Accept</td>
<td>0.87 Accept</td>
</tr>
<tr>
<td>R^2</td>
<td>0.20</td>
<td>0.42</td>
</tr>
<tr>
<td>N</td>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>

1 std dev increase in individualism (23.0) results in 23 higher Solow residual (23% of US level) and 48 higher output per capita (48% of US level). Solow residual and output per capita come from the Penn World Tables mark 5.6. All estimates are significant at 5% level.
Conclusions

- If ideas and germs spread in similar ways, disease prevalence can rationalize social networks that inhibit technology diffusion and growth.
- Differences in social networks persist, even after disease disappears. Large income effects over time.
- IV analysis finds evidence of the effect of social networks on technology.
- More generally we offer a theory of endogenous social institutions and show how to measure and test for their effects.
Backup

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obsv</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>75</td>
<td>47.84</td>
<td>21.33</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>Solow Resid</td>
<td>64</td>
<td>81.94</td>
<td>6.47</td>
<td>62.8</td>
<td>90.2</td>
</tr>
<tr>
<td>GDP/capita</td>
<td>65</td>
<td>92.87</td>
<td>8.97</td>
<td>70.2</td>
<td>104.8</td>
</tr>
<tr>
<td>Individualism</td>
<td>75</td>
<td>42.27</td>
<td>22.98</td>
<td>6</td>
<td>91</td>
</tr>
<tr>
<td>Pronoun</td>
<td>65</td>
<td>0.68</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>% english</td>
<td>70</td>
<td>0.077</td>
<td>0.24</td>
<td>0</td>
<td>0.974</td>
</tr>
<tr>
<td>hum_res</td>
<td>75</td>
<td>1.28</td>
<td>1.16</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>zoo_res</td>
<td>75</td>
<td>2.87</td>
<td>1.49</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>hum_multi_res</td>
<td>75</td>
<td>10.25</td>
<td>5.33</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>diff_res</td>
<td>75</td>
<td>7.39</td>
<td>4.76</td>
<td>-1</td>
<td>16</td>
</tr>
<tr>
<td>diff_res_std</td>
<td>75</td>
<td>0.0011</td>
<td>0.995</td>
<td>-2.04</td>
<td>2.63</td>
</tr>
<tr>
<td>Life Exp</td>
<td>73</td>
<td>62.44</td>
<td>9.69</td>
<td>35.95</td>
<td>74.65</td>
</tr>
<tr>
<td>Soc Infra</td>
<td>67</td>
<td>0.549</td>
<td>0.262</td>
<td>0.113</td>
<td>1</td>
</tr>
<tr>
<td>pathcontemp</td>
<td>73</td>
<td>32.33</td>
<td>6.50</td>
<td>23</td>
<td>47</td>
</tr>
</tbody>
</table>