Eurodollar Futures

Concepts
- Eurodollar Futures (EDF)
- Futures rate
- Convexity adjustment

Reading
- Veronesi, Chapter 6
- Tuckman, Chapter 17
- Sundaresan, Chapter 15
Eurodollar Futures (EDF)

- Eurodollar futures are cash-settled futures contracts with final futures price based on three-month LIBOR at the expiration date:
 \[G(T) = 100(1 - 7^{T+.25}) \]
- For example, if 3-month LIBOR is 1% on the futures expiration date, the EDF price is 99.00.
- Contracts are based on $1,000,000 par, but marked to market based on the change in the unannualized rate. I.e., each one basis point change in the EDF price induces a mark-to-market of $25 = 1,000,000 \times 0.0001/4.

The Eurodollar Futures Market

- EDFs are traded on the Chicago Mercantile Exchange.
- For quotes and contract specifications, see http://www.cmegroup.com/trading/interest-rates/stir/eurodollar_quotes_globex.html
- Contracts with expiration dates every month for nearest 6 months, and then every quarter March, June, September, December, out ten years.
- Contracts with expiration up to three years are very liquid. These futures prices form the basis for calibrating the short end of the LIBOR term-structure for LIBOR-based derivative pricing models. LIBOR swap rates are used for the long end of the LIBOR term structure.
Example

- Let’s consider a stylized example of an EDF based on the 0.5-year riskless rate \(r_{T+0.5} \) in our model.
- Suppose the contract expires at time 0.5.

\[
\begin{array}{c|c}
\text{Time 0} & \text{Time 0.5} \\
94.6375 & 93.996 = 100-6.004 \\
95.279 = 100-4.721 & \\
=0.5(93.996+95.279) \\
\end{array}
\]

The Futures Rate

- Define the futures rate as
 \[
g = \frac{(100-\text{EDF price})}{100}.
\]
- The time 0 futures rate for this contract is
 \[
g_{0.5} = \frac{(100-94.6375)}{100} = 5.3625\%
\]

- Class Problem: What is the forward rate \(f_{0.5} \)?
The Convexity Adjustment (I)

- The futures rate is higher than the corresponding forward rate. Thus, to extract forward rates from EDF rates, it is necessary to make an adjustment commonly called the “convexity adjustment.”
- The difference arises for two reasons. Here is one:
 - The futures rate is the risk-neutral expected future rate:
 \[G_T^{T+0.25} = E\{100(1-r_{T+0.25})\} \Rightarrow g_T^{T+0.25} = E\{r_{T+0.25}\} \]
 - Similarly, in our stylized example, \[g_T^{T+0.5} = E\{r_{T+0.5}\} \].
- But for \(T = 0.5 \), which is one period out in our model,
 \[1/(1+f_{0.5}/2) = F_{0.5} < d_1/d_{0.5} = E\{0.5d_1\} = E\{1/(1+0.5r_1/2)\} \]
 \[> 1/(1+E\{0.5r_1/2\}) \] because \(1/(1+0.5r_1/2) \) is convex in \(0.5r_1 \)
 \[\Rightarrow f_{0.5} < E\{0.5r_1\} = g_{0.5} \].

The Convexity Adjustment (II)

- For expiration dates farther out, there is the additional effect of marking to market.
- For example, in a FRA, all the “marking-to-market” \(f-r \) comes at the end.
- In the EDF, the sum of marks-to-market are
 \[g(0)-g(1) + g(1)-g(2) + \ldots + g(T-1)-r= g(0)-r \]
 but negative marks are reinvested at higher rates, while positive marks are reinvested at lower rates, so the futures rate \(g \) must be higher than the forward rate \(f \) to compensate for this adverse effect.
- This is the same as the way that the marking to market in a bond futures contract makes the futures price lower than the forward price of the underlying bond.
Class Problem

- Consider again a stylized example of a EDF based on the 0.5-year riskless rate $r_{1.5}$ in our model.
- Suppose the contract expires at time 1 and the contract is marked to market every 0.5 years.
- Fill in the tree of EDF prices below:

<table>
<thead>
<tr>
<th>Time 0</th>
<th>Time 0.5</th>
<th>Time 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class Problems…

- What is the time 0 futures rate $g_{1.5}$?

- What is the time 0 forward rate $f_{1.5}$?