Summary of Yield Measures

I. T-Bills

1. (Bank) Discount Yield \(= \left(\frac{F - P}{F} \right) / t \), \(t = \frac{x}{360} \)

 The number of days to maturity equals \(x \).

 Problems: (i) Uses \(F \) in denominator
 (ii) Uses 360 days

2. Bond Yield Equivalent \(= \left(\frac{F - P}{P} \right) / t \), \(t = \frac{x}{365} \)

 Problems: Uses simple interest to annualize (this is the so-called Annual Percentage Rate (APR) procedure, which takes the periodic rate and multiplies by the number of periods per year, where 1 \(t \) equals the number of periods per year).

3. Effective Annual Rate \(= (1 + bye \cdot t)^{\frac{1}{t}} - 1 \)

 Problems: Although the EAR properly accounts for compounding within a year, it still has the implicit reinvestment assumption of all yield to maturity type measures.
II. Zeros

1. **Yield to Maturity** \((t = \text{years to maturity}) \)

 a) Annual Compounding = \(\frac{t}{\sqrt[2]{P} - 1} \) or \(\left(\frac{F}{P} \right)^{\frac{1}{t}} - 1 \)

 b) Semi-annual compounding = \(2 \left\{ \frac{2t}{\sqrt[2]{P} - 1} \right\} \) or \(2 \left(\frac{F}{P} \right)^{\frac{1}{2t}} - 1 \)

 c) Effective Annual Rate = \(\left(1 + \frac{\text{semi-annual} \ YTM}{2} \right)^{2} - 1 \)

2. **Holding Period Yield**

 Same as 1(a), (b) and (c) except selling price replaces \(F \) and years held replaces \(t \).

III. Coupon Bonds

1. **Coupon Rate** = \(C/F \)

 Problems: When a bond sells at par, this equals yield to maturity, otherwise it ignores the effect of price paid differing from \(F \).

2. **Current Yield** = \(C/P \)

 Problems: Although it improves on \(C/F \) by replacing \(F \) with \(P \), it ignores the capital appreciation or depreciation associated with \(P \) moving to \(F \) at maturity.
3. **Yield to Maturity** = internal rate of return. Implicitly includes all effects of P, C, and F on yields.

a) **Annual pay bonds**

 IRR using number of periods = number of years

b) **Semi-annual pay bonds**

 Double IRR using number of periods = twice the number of years to maturity

4. **Effective Annual Rate**

a) **Annual pay bonds** = Yield to maturity

b) **Semi-annual pay bonds** = \(\left(1 + \frac{YTM}{2}\right)^2 - 1 \)

5. **Holding Period Yield** = Return per annum

a) When coupon is at end (for annual pay bond), and \(P' \) is the selling price at the end of one year:

 \[HPY = \frac{P' - P + C}{P} \]

b) When coupon payments occur throughout holding period:

 i) \(HPY = YTM \) only if annual coupon payments are reinvested at YTM (this assumes the bond is held to maturity).

 ii) If coupons are reinvested at some other rate, and/or if the bond is a semi-annual pay bond, and if \(t' \) is years held, then you must calculate the final value of all cash flows and then solve as follows:

 \[HPY = \sqrt[\frac{t'}{2}]{\frac{Final \ value \ of \ all \ cash \ flows}{Initial \ price}} - 1 \]

 Bodie Kane and Marcus call this the Realized Compound Yield
iii) If annual returns are given (HPY₁, HPY₂, ...) and there are t' years, then you can use the following formula:

\[HPY = \frac{1}{t'} \left(\frac{1}{(1 + HPY_1)(1 + HPY_2) \ldots (1 + HPY_{t'})} - 1 \right) \]

6. **Yield to Call**

Same as yield to maturity except call price replaces face value and number of periods equals periods to call date