Equilibrium Term Structure under the Expectations Theory

PART I

Given: \(r_1 = .02; \) and Expected \(r_{t+1} = .04 \)

To Prove: Equilibrium \(r_2 = \left[(1.02)(1.04) \right]^{1/2} - 1 = .02995 \approx .03 \)

Approach: Assume \(r_2 = .02995 = .03 \) and examine investor holding period yields (HPY). If short-term (one-year) investors realize the same HPY by buying \(r_1 \) compared with buying \(r_2 \) and selling after one year, they will be indifferent between investing in \(r_1 \) and investing in \(r_2 \). And if long-term (two-year) investors realize the same HPY by buying \(r_2 \) compared with buying \(r_1 \) and reinvesting at Exp \(r_{t+1} = .04 \) they too will be indifferent between investing in \(r_1 \) compared with \(r_2 \). This would imply no buying or selling pressure in the marketplace, hence prices and yields would be equilibrium.

Proof: Uses Pure Discount Bonds

\[
\begin{align*}
\text{NB:} & \quad r_1 = .02 \implies P_1 = \frac{100}{1.02} = 98.0392 \\
r_2 = .03 \implies P_2 = \frac{100}{(1.03)^2} = 94.2596
\end{align*}
\]

ONE-YEAR INVESTOR ALTERNATIVE STRATEGIES

Strategy 1: Buy \(r_1 \) at 98.0392 and hold to maturity

\[
\text{HPY} = \frac{100}{98.0392} - 1 = .02
\]
Strategy 2: Buy \(iR_2 \) at 94.2596 and sell after one year. Because \(iR_2 \) becomes a one-year bond after one year and because one-year bonds next year are expected to yield 4%, the expected selling price of \(iR_2 \) next year is:

\[
\frac{100}{1.04} = 96.154
\]

\[
HPY = \frac{96.154}{94.2596} - 1 = 0.02
\]

TWO-YEAR INVESTOR ALTERNATIVE STRATEGIES

Strategy 1: Buy \(iR_1 \) and reinvest at \(Exp_{t+1}R_1 \).

\[
HPY = \left[(1.02)(1.04) \right]^{1/2} - 1 \approx 0.02995 \approx 0.03
\]

Strategy 2: Buy \(iR_2 \) and hold to maturity

\[
HPY = \left(\frac{100}{94.2596} \right)^{1/2} - 1 \approx 0.02999 \approx 0.03
\]

Conclusion

Because HPY's for all investors and all strategies are equal, the term structure is in equilibrium with \(iR_2 \) a geometric average of \(iR_1 \) and \(Exp_{t+1}R_1 \).

PART II

Question

What happens to equilibrium \(iR_2 \) when expectations change? In particular, when \(Exp_{t+1}r_1 = 0.06 \), what is the new equilibrium \(iR_2 \)? How does it come about?

Given: \(iR_1 = 0.02 \) and the new \(Exp_{t+1}R_1 = 0.06 \)

To Prove: The new equilibrium \(iR_2 = [(1.02)(1.06)]^{1/2} - 1 = 0.0398 \) because portfolio adjustments by market participants will make it so.
Approach: Assume for a moment that \(P_2 \) (the price of \(tR_2 \)) remains at 94.2596 so that \(tR_2 \) remains at .03. Examine what portfolio adjustments "two-year" investors will undertake and see what impact that will have on \(P_2 \). After determining the new equilibrium \(P_2 \) that leaves two-year investors indifferent between both of their investment strategies, see if that \(P_2 \) "works" for one-year investors. If so, that is the new equilibrium \(P_2 \) with the associated new equilibrium \(tR_2 \).

Proof:

TWO-YEAR INVESTOR STRATEGIES

1. Two-year investors prefer \(tR_1 \) and reinvesting in new \(Exp_{t+1}R_1 \)

\[
HPY = \left[(1.02)(1.06)\right]^{1/2} - 1 = .0398
\]

To buying \(tR_2 \) at the old \(P_2 = 94.2596 \)

\[
HPY = \left(\frac{100}{94.2596}\right)^{1/2} - 1 = .092999 \approx .03
\]

2. Therefore, two-year investors want to sell \(tR_2 \) at \(P_2 = 94.2596 \). This selling pressure drives down \(P_2 \) until two-year investors are willing to hold \(tR_2 \). That occurs when its new \(HPY = .0398 \).

Therefore, the new equilibrium \(P_2 \) is

\[
P_2 = \frac{100}{(1.0398)^2} = 92.49
\]

At this new price the yield on \(tR_2 \) is:

\[
HPY = \left(\frac{100}{92.49}\right)^{1/2} - 1 = .0398
\]

Thus two-year investors are indifferent between \(tR_1 \) and \(tR_2 \) when \(P_2 = 92.49 \).

ONE-YEAR INVESTOR STRATEGIES

With \(P_2 = 92.49 \) and \(tR_2 = .0398 \) one-year investors are also indifferent between both of their strategies, as shown in the following 2 possibilities:
1. Buy \(iR_1 \) and earn .02

2. Buy \(iR_2 \) and sell after one year. The expected selling price of \(iR_2 \) after one year is now:

\[
\frac{100}{1.06} = 94.3396
\]

Therefore

\[
HPY = \frac{94.3396}{92.49} - 1 = .01999 \approx .02
\]

Therefore,

New equilibrium \(P_2 = 92.49 \)

New equilibrium \(iR_2 = .0398 \)

Conclusion

Market forces in the form of portfolio adjustments by investors drive long-term rates into an average of current and expected future short-term rates.