Annuities and Perpetuities: Present Value

William L. Silber

I. The present value of an annuity, \(PV \), can be written as the sum of the present values of each component annual payment, \(C \), as follows:

\[
P V = \frac{C}{1 + r} + \frac{C}{(1 + r)^2} + \cdots + \frac{C}{(1 + r)^t}
\]

where \(r \) is the single average interest rate per annum and \(t \) is the number of years the annuity is paid.

This can be simplified as follows:

\[
P V = C \left[\frac{1}{1 + r} + \frac{1}{(1 + r)^2} + \cdots + \frac{1}{(1 + r)^t} \right]
\]

Using a formula for the sum of a geometric progression (as long as \(r > 0 \)), we have:

\[
P V = C \left[\frac{1 - (1 + r)^{-t}}{r} \right],
\]

which is the same as:

\[
P V = C \left[\frac{1}{r} - \frac{1}{r (1 + r)^t} \right]
\]

II. Thus if you have a three-year annuity \((t = 3)\) that pays $100 per annum \((C = $100)\) and the average annual interest rate, \(r \), is 6 percent, then from equation (4), we have:
\[PV = \$100.00 \left[\frac{1}{.06} - \frac{1}{.06(1.06)^{1}} \right] = \$267.30 \]

You can check that this is correct by calculating:

\[PV = \frac{\$100}{1.06} + \frac{\$100}{(1.06)^{2}} + \frac{\$100}{(1.06)^{3}} = \$267.30 \]

III. More interesting is what happens to the present value formula when the annual payments, \(C \), continue forever. The annuity becomes a perpetuity as \(t \to \infty \) and the formula in (4) becomes:

\[PV = \frac{C}{r} - \frac{1}{r(1+r)^{\infty}} \]

(5)

\[PV = \frac{C}{r} - \frac{1}{r^{\infty}} \]

(6)

Or, finally,

\[PV = \frac{C}{r} \]

IV. Equation (7) is very simple. It says that the present value of an annuity of \(C \) dollars per annum is \(C \) divided by \(r \), where \(r \) is the average interest rate per annum. This makes considerable sense once you provide a numerical example. Suppose \(C = \$10 \) per annum and the interest rate is .05, or 5 percent. How many dollars, designated by the letter \(P \), would you have to put away today so that it produces \$10 in each year forever? The answer is given by solving the following formula for \(P \):
\[P \times 0.05 = 10 \]

\[P = \frac{10}{0.05} = 200. \]

Investing $200 at 5 percent generates $10 in interest per year and continues to do so forever. Thus, if an annuity promises to pay $10 forever and the annual interest rate is 5 percent, the value of that infinite stream of payments is $200. If the annuity were priced in a competitive market its price should be $200.