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Estimation FramEworks in 
EconomEtrics

§
12.1 INTRODUCTION

this chapter begins our treatment of methods of estimation. contemporary econometrics 
offers the practitioner a remarkable variety of estimation methods, ranging from tightly 
parameterized likelihood-based techniques at one end to thinly stated nonparametric 
methods that assume little more than mere association between variables at the other, 
and a rich variety in between. Even the experienced researcher could be forgiven for 
wondering how to choose from this long menu. it is certainly beyond our scope to answer 
this question here, but a few principles will be suggested. recent research has leaned, 
when possible, toward methods that require few (or fewer) possibly unwarranted or 
improper assumptions. this explains the ascendance of the Gmm estimator in situations 
where strong likelihood-based parameterizations can be avoided and robust estimation 
can be done in the presence of heteroscedasticity and serial correlation. (it is intriguing to 
observe that this is occurring at a time when advances in computation have helped bring 
about increased acceptance of very heavily parameterized Bayesian methods.)

as a general proposition, the progression from full to semiparametric to 
nonparametric estimation relaxes strong assumptions, but at the cost of weakening the 
conclusions that can be drawn from the data. as much as anywhere else, this is clear in 
the analysis of discrete choice models, which provide one of the most active literatures 
in the field. (a sampler appears in chapter 17.) a formal probit or logit model allows 
estimation of probabilities, partial effects, and a host of ancillary results, but at the cost 
of imposing the normal or logistic distribution on the data. Semiparametric estimators 
and nonparametric estimators allow one to relax the restriction but often provide, in 
return, only ranges of probabilities, if that, and in many cases, preclude estimation of 
probabilities or useful partial effects. the conclusions drawn based on the nonparametric 
and semiparametric estimators, such as they are, are robust.1

Estimation properties is another arena in which the different approaches can be 
compared. within a class of estimators, one can define the best (most efficient) means 
of using the data. (see Example 12.2 for an application.) sometimes comparisons can be 
made across classes as well. For example, when they are estimating the same parameters—
this remains to be established—the best parametric estimator will generally outperform 
the best semiparametric estimator. that is the value of the additional information used by 
the parametric estimator, of course. the other side of the comparison, however, is that the 
semiparametric estimator will carry the day if the parametric model is misspecified in a 
fashion to which the semiparametric estimator is robust (and the parametric model is not).

1see, for example, the symposium in angrist and Pischke (2010) for a spirited discussion on these points.
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466 Part III  ✦   Estimation Methodology

schools of thought have punctuated this conversation. Proponents of Bayesian 
estimation often took an almost theological viewpoint in their criticism of their classical 
colleagues.2 contemporary practitioners are usually more pragmatic than this. Bayesian 
estimation has gained currency as a set of techniques that can, in very many cases, 
provide both elegant and tractable solutions to problems that have heretofore been out 
of reach.3 thus, for example, the simulation-based estimation advocated in the many 
papers of chib and Greenberg (for example, 1996) have provided solutions to a variety 
of computationally challenging problems. arguments as to the methodological virtue of 
one approach or the other have received much less attention than before.

chapters 2 through 7 of this book have focused on the classical regression model 
and a particular estimator, least squares (linear and nonlinear). in this and the next 
four chapters, we will examine several general estimation strategies that are used in 
a wide variety of situations. this chapter will survey a few methods in the three broad 
areas we have listed. chapter 13 discusses the generalized method of moments, which 
has emerged as the centerpiece of semiparametric estimation. chapter 14 presents the 
method of maximum likelihood, the broad platform for parametric, classical estimation 
in econometrics. chapter 15 discusses simulation-based estimation and bootstrapping. 
this is a body of techniques that have been made feasible by advances in estimation 
technology and which have made quite straightforward many estimators that were 
previously only scarcely used because of the sheer difficulty of the computations. Finally, 
chapter 16 introduces the methods of Bayesian econometrics.

the list of techniques presented here is far from complete. we have chosen a set that 
constitutes the mainstream of econometrics. certainly there are others that might be 
considered.4 Virtually all of them are the subjects of excellent monographs on the subject. 
in this chapter we will present several applications, some from the literature, some home 
grown, to demonstrate the range of techniques that are current in econometric practice. we 
begin in section 12.2 with parametric approaches, primarily maximum likelihood. Because 
this is the subject of much of the remainder of this book, this section is brief. section 12.2 
also introduces Bayesian estimation, which in its traditional form is as heavily parameterized 
as maximum likelihood estimation. section 12.3 is on semiparametric estimation. Gmm 
estimation is the subject of all of chapter 13, so it is only introduced here. the technique of 
least absolute deviations is presented here as well. a range of applications from the recent 
literature is also surveyed. section 12.4 describes nonparametric estimation. the 
fundamental tool, the kernel density estimator, is developed, then applied to a problem in 
regression analysis. two applications are presented here as well. Being focused on 
application, this chapter will say very little about the statistical theory for these techniques—
such as their asymptotic properties. (the results are developed at length in the literature, 
of course.) we will turn to the subject of the properties of estimators briefly at the end of 
the chapter, in section 12.5, then in greater detail in chapters 13 through 16.

2see, for example, Poirier (1995).
3the penetration of Bayesian methods in econometrics could be overstated. it is quite well represented in current 
journals such as the Journal of Econometrics, Journal of Applied Econometrics, Journal of Business and Economic 
Statistics, and so on. on the other hand, of the six major general treatments of econometrics published in 2000, 
four (Hayashi, ruud, Patterson, Davidson) do not mention Bayesian methods at all. a buffet of 32 essays (Baltagi) 
devotes only one to the subject. Likewise, wooldridge’s (2010) widely cited treatise contains no mention of 
Bayesian econometrics. the one that displays any preference [for example, mittelhammer et al. (2000)] devotes 
nearly 10% (70) of its pages to Bayesian estimation, but all to the broad metatheory of the linear regression model 
and none to the more elaborate applications that form the received applications in the many journals in the field.
4see, for example, mittelhammer, Judge, and miller (2000) for a lengthy catalog.
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12.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs from a full statement of the density or probability model 
that provides the data-generating mechanism for a random variable of interest. For the 
sorts of applications we have considered thus far, we might say that the joint density of 
a scalar random variable, y, and a random vector, x, of interest can be specified by

 f(y, x) = g(y � x, B) * h(x �U), (12-1)

with unknown parameters B and U. to continue the application that has occupied 
us since chapter 2, consider the linear regression model with normally distributed 
disturbances. the assumption produces a full statement of the conditional density that 
is the population from which an observation is drawn,

yi � xi ∼ N[xi′B, s2].

all that remains for a full definition of the population is knowledge of the specific 
values taken by the unknown, but fixed, parameters. with those in hand, the conditional 
probability distribution for yi is completely defined—mean, variance, probabilities of 
certain events, and so on. (the marginal density for the conditioning variables is usually 
not of particular interest.) thus, the signature features of this modeling platform are 
specifications of both the density and the features (parameters) of that density.

the parameter space for the parametric model is the set of allowable values of 
the parameters that satisfy some prior specification of the model. For example, in the 
regression model specified previously, the K regression slopes may take any real value, 
but the variance must be a positive number. therefore, the parameter space for that 
model is [b, s2] ∈  ℝK * ℝ+ . Estimation in this context consists of specifying a criterion 
for ranking the points in the parameter space, then choosing that point (a point estimate) 
or a set of points (an interval estimate) that optimizes that criterion, that is, has the best 
ranking. thus, for example, we chose linear least squares as one estimation criterion 
for the linear model. Inference in this setting is a process by which some regions of the 
(already specified) parameter space are deemed not to contain the unknown parameters, 
though, in more practical terms, we typically define a criterion and then state that, by that 
criterion, certain regions are unlikely to contain the true parameters.

12.2.1  CLASSICAL LIKELIHOOD-BASED ESTIMATION

the most common (by far) class of parametric estimators used in econometrics is the 
maximum likelihood estimators. the underlying philosophy of this class of estimators 
is the idea of sample information. when the density of a sample of observations is 
completely specified, apart from the unknown parameters, then the joint density of 
those observations (assuming they are independent), is the likelihood function

 f(y1, y2, c, x1, x2, c) = q
n

i= 1
f(yi, xi �B, U). (12-2)

this function contains all the information available in the sample about the population 
from which those observations were drawn. the strategy by which that information is 
used in estimation constitutes the estimator.

the maximum likelihood estimator [Fisher (1925)] is the function of the data that 
(as its name implies) maximizes the likelihood function (or, because it is usually more 

M12_GREE1366_08_SE_C12.indd   467 2/6/17   4:05 PM



468 Part III  ✦   Estimation Methodology

convenient, the log of the likelihood function). the motivation for this approach is most 
easily visualized in the setting of a discrete random variable. in this case, the likelihood 
function gives the joint probability for the sample data, and the maximum likelihood 
estimator is the function of the sample information that makes the observed data most 
probable (at least by that criterion). though the analogy is most intuitively appealing 
for a discrete variable, it carries over to continuous variables as well. Because this 
estimator is the subject of chapter 14, which is quite lengthy, we will defer any formal 
discussion until then and consider instead two applications to illustrate the techniques 
and underpinnings.

Example 12.1   The Linear Regression Model
Least squares weighs negative and positive deviations equally and gives disproportionate 
weight to large deviations in the calculation. This property can be an advantage or a 
disadvantage, depending on the data-generating process. For normally distributed 
disturbances, this method is precisely the one needed to use the data most efficiently. If the 
data are generated by a normal distribution, then the log of the likelihood function is

ln L = -
n
2

 ln 2p -
n
2

 ln s2 -
1

2s2  (y - XB)′(y - XB).

You can easily show that least squares is the estimator of choice for this model. Maximizing 
the function means minimizing the exponent, which is done by least squares for B, then e′e/n 
follows as the estimator for s2.

If the appropriate distribution is deemed to be something other than normal—perhaps 
on the basis of an observation that the tails of the disturbance distribution are too thick (see 
Example 4.8 and Section 14.9.2.a) then there are three ways one might proceed. First, as we 
have observed, the consistency of least squares is robust to this failure of the specification so 
long as the conditional mean of the disturbances is still zero. Some correction to the standard 
errors is necessary for proper inferences. Second, one might want to proceed to an estimator 
with better finite sample properties. The least absolute deviations estimator discussed in 
Section 12.3.3 is a candidate. Finally, one might consider some other distribution which 
accommodates the observed discrepancy. For example, Ruud (2000) examines in some detail 
a linear regression model with disturbances distributed according to the t distribution with 
v degrees of freedom. As long as v is finite, this random variable will have a larger variance 
than the normal. Which way should one proceed? The third approach is the least appealing. 
Surely if the normal distribution is inappropriate, then it would be difficult to come up with 
a plausible mechanism whereby the t distribution would be. The LAD estimator might well 
be preferable if the sample were small. If not, then least squares would probably remain the 
estimator of choice, with some allowance for the fact that standard inference tools would 
probably be misleading. Current practice is generally to adopt the first strategy.

Example 12.2   The Stochastic Frontier Model
The stochastic frontier model, discussed in detail in Chapter 19, is a regression-like model 
with a disturbance distribution that is asymmetric and distinctly nonnormal. The conditional 
density for the dependent variable in this skew normal model is

f(y � x, B, s, l) =
22

s2p
 exp J - (y - a - x′B)2

2s2 RΦa -l(y - a - x′B)
s

b .

This produces a log-likelihood function for the model,

ln L = -n ln s -
n
2

 ln 
2
p

-
1
2 a

n

i= 1
¢ ei

s
≤2

+ a
n

i= 1
 ln Φ ¢ -lei

s
≤.
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There are at least two fully parametric estimators for this model. The maximum likelihood 
estimator is discussed in Section 19.2.4. Greene (2007a) presents the following method 
of moments estimator: For the regression slopes, excluding the constant term, use least 
squares. For the parameters a, s, and l, based on the second and third moments of the least 
squares residuals and the least squares constant, solve

 m2 = sv
2 + [1 - 2/p]su

2,

 m3 = (2/p)1/2[1 - 4/p]su
3,

 a = a + (2/p)2su,

where l = su/sv and s2 = su
2/sv

2.
Both estimators are fully parametric. The maximum likelihood estimator is for the reasons 

discussed earlier. The method of moments estimators (see Section 13.2) are appropriate only 
for this distribution. Which is preferable? As we will see in Chapter 19, both estimators are 
consistent and asymptotically normally distributed. By virtue of the Cramér–Rao theorem, 
the maximum likelihood estimator has a smaller asymptotic variance. Neither has any small 
sample optimality properties. Thus, the only virtue of the method of moments estimator is 
that one can compute it with any standard regression/statistics computer package and a 
hand calculator whereas the maximum likelihood estimator requires specialized software (only 
somewhat—it is reasonably common).

12.2.2  MODELING JOINT DISTRIBUTIONS WITH COPULA FUNCTIONS

specifying the likelihood function commits the analyst to a possibly strong assumption 
about the distribution of the random variable of interest. the payoff, of course, is the 
stronger inferences that this permits. However, when there is more than one random 
variable of interest, such as in a joint household decision on health care usage in the 
example to follow, formulating the full likelihood involves specifying the marginal 
distributions, which might be comfortable, and a full specification of the joint distribution, 
which is likely to be less so. in the typical situation, the model might involve two similar 
random variables and an ill-formed specification of correlation between them. implicitly, 
this case involves specification of the marginal distributions. the joint distribution is an 
empirical necessity to allow the correlation to be nonzero. the copula function approach 
provides a mechanism that the researcher can use to steer around this situation.

trivedi and Zimmer (2007) suggest a variety of applications that fit this description:

●● Financial institutions are often concerned with the prices of different, related 
(dependent) assets. the typical multivariate normality assumption is problematic 
because of GarcH effects (see section 20.13) and thick tails in the distributions. 
while specifying appropriate marginal distributions may be reasonably 
straightforward, specifying the joint distribution is anything but that. klugman and 
Parsa (2000) is an application.

●● there are many microeconometric applications in which straightforward marginal 
distributions cannot be readily combined into a natural joint distribution. the 
bivariate event count model analyzed in munkin and trivedi (1999) and in the next 
example is an application.

●● in the linear self-selection model of chapter 19, the necessary joint distribution is 
part of a larger model. the likelihood function for the observed outcome involves 
the joint distribution of a variable of interest, hours, wages, income, and so on, and 
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the probability of observation. the typical application is based on a joint normal 
distribution. smith (2003, 2005) suggests some applications in which a flexible copula 
representation is more appropriate. [in an intriguing early application of copula 
modeling that was not labeled as such, since it greatly predates the econometric 
literature, Lee (1983) modeled the outcome variable in a selectivity model as normal, 
the observation probability as logistic, and the connection between them using what 
amounted to the “Gaussian” copula function shown next.]

●● cheng and trivedi (2015) used a copula function as an alternative to the bivariate 
normal distribution in analyzing attrition in a panel data set. (this application is 
examined in Example 11.3.)

although the antecedents in the statistics literature date to sklar’s (1973) derivations, 
the applications in econometrics and finance are quite recent, with most applications 
appearing since 2000.5

consider a modeling problem in which the marginal cdfs of two random variables can 
be fully specified as F1(y1 � •) and F2(y2 � •), where we condition on sample information 
(data) and parameters denoted “•.” For the moment, assume these are continuous 
random variables that obey all the axioms of probability. the bivariate cdf is F12(y1, y2 � •). 
a (bivariate) copula function (the results also extend to multivariate functions) is a 
function C(u1, u2) defined over the unit square [(0 … u1 … 1) * (0 … u2 … 1)] that 
satisfies

(1) C(1, u2) = u2 and C(u1, 1) = u1,

(2) C(0, u2) = C(u1, 0) = 0,

(3) 0C(u1, u2)/0u1 Ú 0 and 0C(u1, u2)/0u2 Ú 0.

these are properties of bivariate cdfs for random variables u1 and u2 that are bounded 
in the unit square. it follows that the copula function is a two-dimensional cdf defined 
over the unit square that has one-dimensional marginal distributions that are standard 
uniform in the unit interval [that is, property (1)]. to make profitable use of this 
relationship, we note that the cdf of a random variable, F1(y1 � •), is, itself, a uniformly 
distributed random variable. this is the fundamental probability transform that we 
use for generating random numbers. (see section 15.2.) in Sklar’s theorem(1973), the 
marginal cdfs play the roles of u1 and u2. the theorem states that there exists a copula 
function, C(...,...) such that

F12(y1, y2 � •) = C[F1(y1 � •), F2(y2 � •)].

if F12(y1, y2 � •) = C[F1(y1 � •), F2(y2 � •)] is continuous and if the marginal cdfs have 
quantile (inverse) functions F j

-1(uj) where 0 … uj … 1, then the copula function can 
be expressed as

 F12(y1, y2 � •) = F12[F 1
-1(u1 � •), F 2

-1(u2 � •)]

 = Prob[U1 … u1, U2 … u2]

 = C(u1, u2).

5see the excellent survey by trivedi and Zimmer (2007) for an extensive description.
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in words, the theorem implies that the joint density can be written as the copula function 
evaluated at the two cumulative probability functions.

copula functions allow the analyst to assemble joint distributions when only the 
marginal distributions can be specified. to fill in the desired element of correlation 
between the random variables, the copula function is written

F12(y1, y2 � •) = C[F1(y1 � •), F2(y2 � •), u],

where u is a dependence parameter. For continuous random variables, the joint pdf is 
then the mixed partial derivative,

 f12(y1, y2 � •) = c12[F1(y1 � •), F2(y2 � •), u]

 = 02C[F1(y1 � •), F2(y2 � •), u]/0y10y2

 = [02C(., ., u)/0F10F2]f1(y1 � •)f2(y2 � •). 

(12-3)

a log-likelihood function can now be constructed using the logs of the right-hand 
sides of (12-3). taking logs of (12-3) reveals the utility of the copula approach. the 
contribution of the joint observation to the log likelihood is

ln f12(y1, y2 � •) = ln[02C(., ., u)/0F10F2] + ln f1(y1 � •) + ln f2(y2 � •).

some of the common copula functions that have been used in applications are as follows:

Product:   C[u1, u2, u] = u1u2,

FGm:   C[u1, u2, u] = u1u2[1 + u(1 - u1)(1 - u2)],

Gaussian:  C[u1, u2, u] = Φ2[Φ-1(u1), Φ-1(u2), u],

clayton:   C[u1, u2, u] = [u1
-u + u2

-u - 1]-1/u,

Frank:   C[u1, u2, u] =
1
u

 lnJ1 +
exp(uu1 - 1) exp(uu2 - 1)

exp(u) - 1
R ,

Plackett:  C[u1, u2, u] =
1 + (u - 1)(u1 + u2) - 2[1 + (u - 1)(u1 + u2)]2 - 4u(u - 1)(u1u2)

2(u - 1)
.

the product copula implies that the random variables are independent because 
it implies that the joint cdf is the product of the marginals. in the FGm (Fairlie, 
Gumbel, morgenstern) copula, it can be seen that u = 0 implies the product copula, or 
independence. the same result can be shown for the clayton copula. independence in 
the Plackett copula follows if u = 1. in the Gaussian function, the copula is the bivariate 
normal cdf if the marginals happen to be normal to begin with. the essential point is 
that the marginals need not be normal to construct the copula function, so long as 
the marginal cdfs can be specified. (the dependence parameter is not the correlation 
between the variables. trivedi and Zimmer provide transformations of u that are closely 
related to correlations for each copula function listed.)

the essence of the copula technique is that the researcher can specify and analyze 
the marginals and the copula functions separately. the likelihood function is obtained 
by formulating the cdfs [or the densities because the differentiation in (12-3) will reduce 
the joint density to a convenient function of the marginal densities] and the copula.
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Example 12.3   Joint Modeling of a Pair of Event Counts
The standard regression modeling approach for a random variable, y, that is a count of events 
is the Poisson regression model,

Prob[Y = y � x] = exp(-l)ly/y!, where l = exp(x′B), y = 0, 1, c.

More intricate specifications use the negative binomial model (version 2, NB2),

Prob[Y = y � x] =
Γ(y + a)

Γ(a)Γ(y + 1)
 ¢ a

l + a
≤a¢ l

l + a
≤y

, y = 0, 1, c,

where a is an overdispersion parameter.  (See Section 18.4.) A satisfactory, appropriate 
specification for bivariate outcomes has been an ongoing topic of research. Early suggestions 
were based on a latent mixture model,

 y1 = z + w1,

 y2 = z + w2,

where w1 and w2 have the Poisson or NB2 distributions specified earlier with conditional 
means l1 and l2 and z is taken to be an unobserved Poisson or NB variable. This formulation 
induces correlation between the variables but is unsatisfactory because that correlation must 
be positive. In a natural application, y1 is doctor visits and y2 is hospital visits. These could 
be negatively correlated. Munkin and Trivedi (1999) specified the jointness in the conditional 
mean functions, in the form of latent, common heterogeneity,

lj = exp(xj
=Bj + e),

where e is common to the two functions. Cameron et al. (2004) used a bivariate copula approach 
to analyze Australian data on self-reported and actual physician visits (the latter maintained by 
the Health Insurance Commission). They made two adjustments to the preceding model we 
developed above. First, they adapted the basic copula formulation to these discrete random 
variables. Second, the variable of interest to them was not the actual or self-reported count 
but the difference. Both of these are straightforward modifications of the basic copula model.

Example 12.4   The Formula That Killed Wall Street6

David Li (2000) designed a bivariate normal (Gaussian) copula model for the pricing of 
collateralized debt obligations (CDOs) such as mortgage-backed securities. The methodology 
he proposed became a widely used tool in the mortgage-backed securities market. The 
model appeared to work well when markets were stable, but failed spectacularly in the 
turbulent period around the financial crisis of 2008–2009. Li has been (surely unfairly) deemed 
partly to blame for the financial crash of 2008.7

12.3 SEMIPARAMETRIC ESTIMATION

semiparametric estimation is based on fewer assumptions than parametric estimation. in 
general, the distributional assumption is removed, and an estimator is devised from certain 
more general characteristics of the population. intuition suggests two (correct) conclusions. 
First, the semiparametric estimator will be more robust than the parametric estimator—
it will retain its properties, notably consistency across a greater range of specifications . 

6salmon (2000) and Li (1999, 2000).
7For example, Lee (2009), Hombrook (2009), Jones (2009), many others. From the cBc article: “… David Li is a 
canadian math whiz who, some now say, developed the risk formula that destroyed wall street.”
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consider our most familiar example. the least squares slope estimator is consistent whenever 
the data are well behaved and the disturbances and the regressors are uncorrelated. this is 
even true for the frontier function in Example 12.2, which has an asymmetric, nonnormal 
disturbance. But, second, this robustness comes at a cost. the distributional assumption 
usually makes the preferred estimator more efficient than a robust one. the best robust 
estimator in its class will usually be inferior to the parametric estimator when the assumption 
of the distribution is correct. once again, in the frontier function setting, least squares may 
be robust for the slopes, and it is the most efficient estimator that uses only the orthogonality 
of the disturbances and the regressors, but it will be inferior to the maximum likelihood 
estimator when the two-part normal distribution is the correct assumption.

12.3.1  GMM ESTIMATION IN ECONOMETRICS

recent applications in economics include many that base estimation on the method 
of moments. the generalized method of moments departs from a set of model-based 
moment equations, E[m(yi, xi, B)] = 0, where the set of equations specifies a relationship 
known to hold in the population. we used one of these in the preceding paragraph. the 
least squares estimator can be motivated by noting that the essential assumption is that 
E[xi(yi - xi

=B)] = 0. the estimator is obtained by seeking a parameter estimator b which 
mimics the population result, (1/n)Σi[xi(yi - xi

=b)] = 0. these are, of course, the normal 
equations for least squares. note that the estimator is specified without benefit of any 
distributional assumption. method of moments estimation is the subject of chapter 13, 
so we will defer further analysis until then.

12.3.2  MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

Empirical likelihood methods are suggested as a semiparametric alternative to maximum 
likelihood. as we shall see shortly, the estimator is closely related to the Gmm estimator. 
Let pi denote generically the probability that yi � xi takes the realized value in the sample. 
intuition suggests (correctly) that with no further information, pi will equal 1/n. the 
empirical likelihood function is

EL = q n
i= 1pi

1/n.

the maximum empirical likelihood estimator maximizes EL. Equivalently, we maximize 
the log of the empirical likelihood,

ELL =
1
n a

n

i= 1
ln pi.

as a maximization problem, this program lacks sufficient structure to admit a solution—
the solutions for pi are unbounded. if we impose the restrictions that pi are probabilities 
that sum to one, we can use a Lagrangean formulation to solve the optimization problem,

ELL = J 1
n a

n

i= 1
ln piR + lJ1 - a

n

i= 1
piR .

this slightly restricts the problem since with 0 6 pi 6 1 and Σipi = 1, the solution 
suggested earlier becomes obvious. (there is nothing in the problem that differentiates 
the pi’s so they must all be equal to each other.) inserting this result in the derivative 
with respect to any specific pi produces the remaining result, l = 1.
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the maximization problem becomes meaningful when we impose a structure on the 
data. to develop an example, we’ll recall Example 7.6, a nonlinear regression equation 
for Income for the German socioeconomic Panel data, where we specified

E[Income � Age, Sex, Education] = exp(x′B) = h(x, B).

For an example, assume that Education may be endogenous in this equation, but we 
have available a set of instruments, z, say (Age, Health, Sex, Market Condition). we 
have assumed that there are more instruments (4) than included variables (3), so that 
the parameters will be overidentified (and the example will be complicated enough to 
be interesting). (see sections 8.3.4 and 8.9.) the orthogonality conditions for nonlinear 
instrumental variable estimation are that the disturbances be uncorrelated with the 
instrumental variables, so

E{zi[Incomei - h(xi, B)]} = E[mi(B)] = 0.

the nonlinear least squares solution to this problem was developed in section 8.9. 
a Gmm estimator will minimize with respect to B the criterion function

q = m=(B)Am(B),

where A is the chosen weighting matrix. note that for our example, including the constant 
term, there are four elements in B and five moment equations, so the parameters are 
overidentified.

if, instead, we impose the restrictions implied by our moment equations on the 
empirical likelihood function, we obtain the population moment condition,Jan

i= 1
pizi * (Incomei - h(xi, B)) R = 0.

(the probabilities are population quantities, so this is the expected value.) this produces 
the constrained empirical log likelihood,

ELL = J 1
n a

n

i= 1
ln piR + lJ1 - a

n

i= 1
piR + G′Jan

i= 1
pizi (Incomei - h(xi, B)) R .

the function is now maximized with respect to pi, l, B (K elements), and G (L elements, 
the number of instrumental variables). at the solution, the values of pi provide, 
essentially, a set of weights. cameron and trivedi (2005, p. 205) provide a solution for 
pni in terms of (B, G) and show, once again, that l = 1. the concentrated ELL function 
with these inserted provides a function of G and B that remains to be maximized.

the empirical likelihood estimator has the same asymptotic properties as the 
Gmm estimator. (this makes sense, given the resemblance of the estimation criteria—
ultimately, both are focused on the moment equations.) there is evidence that, at least 
in some cases, the finite sample properties of the empirical likelihood estimator might 
be better than Gmm. a survey appears in imbens (2002). one suggested modification 
of the procedure is to replace the core function in (1/n)Σi ln pi with the entropy measure,

Entropy = -(1/n)Σipi ln pi.

the maximum entropy estimator is developed in Golan, Judge, and miller (1996) and 
Golan (2009).
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12.3.3  LEAST ABSOLUTE DEVIATIONS ESTIMATION AND QUANTILE REGRESSION

Least squares can be severely distorted by outlying observations in a small sample. 
recent applications in microeconomics and financial economics involving thick-
tailed disturbance distributions, for example, are particularly likely to be affected 
by precisely these sorts of observations. (of course, in those applications in finance 
involving hundreds of thousands of observations, which are becoming commonplace, this 
discussion is moot.) these applications have led to the proposal of robust estimators that 
are unaffected by outlying observations. one of these, the least absolute deviations, or 
LaD estimator discussed in section 7.3.1, is also useful in its own right as an estimator 
of the conditional median function in the modified model

med[y � x] = x′B.50.

that is, rather than providing a robust alternative to least squares as an estimator of the 
slopes of E[y � x], LaD is an estimator of a different feature of the population. this is 
essentially a semiparametric specification in that it specifies only a particular feature 
of the distribution, its median, but not the distribution itself. it also specifies that the 
conditional median be a linear function of x.

the median, in turn, is only one possible quantile of interest. if the model is extended 
to other quantiles of the conditional distribution, we obtain

Q[y � x, q] = x′Bq such that Prob[y … x′Bq � x] = q, 0 6 q 6 1.

this is essentially a  semiparametric specification. no assumption is made about the 
distribution of y � x or about its conditional variance. the fact that q can vary continuously 
(strictly) between zero and one means that there is an infinite number of possible 
parameter vectors. it seems reasonable to view the coefficients, which we might write B(q) 
less as fixed parameters, as we do in the linear regression model, than loosely as features 
of the distribution of y � x. For example, it is not likely to be meaningful to view B(.49) to 
be discretely different from B(.50) or to compute precisely a particular difference such 
as B(.5) - B(.3). on the other hand, the qualitative difference, or possibly the lack of 
a difference, between B(.3) and B(.5) may well be an interesting characteristic of the 
population. the quantile regression model is examined in section 7.3.2.

12.3.4  KERNEL DENSITY METHODS

the kernel density estimator is an inherently nonparametric tool, so it fits more 
appropriately into the next section. But some models that use kernel methods are not 
completely nonparametric. the partially linear model in section 7.4 is a case in point. 
many models retain an index function formulation, that is, build the specification around 
a linear function x′B, which makes them at least semiparametric, but nonetheless still 
avoid distributional assumptions by using kernel methods. Lewbel’s (2000) estimator 
for the binary choice model is another example.

Example 12.5   Semiparametric Estimator for Binary Choice Models
The core binary choice model analyzed in Section 17.3, the probit model, is a fully parametric 
specification. Under the assumptions of the model, maximum likelihood is the efficient (and 
appropriate) estimator. However, as documented in a voluminous literature, the estimator 
of B is fragile with respect to failures of the distributional assumption. We will examine 
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a few semiparametric and nonparametric estimators in Section 17.4.7. To illustrate the 
nature of the modeling process, we consider an estimator suggested by Lewbel (2000). The 
probit model is based on the normal distribution, with Prob[yi = 1 � xi] = Prob[xi

=B + ei 7 0] 
where ei ∼ N[0, 1]. The estimator of B under this specification may be inconsistent if the 
distribution is not normal or if ei is heteroscedastic. Lewbel suggests the following: If (a) it 
can be assumed that xi contains a “special” variable vi whose coefficient has a known sign, a 
method is developed for determining the sign, and (b) the density of ei is independent of this 
variable, then a consistent estimator of B can be obtained by regression of [yi - s(vi)]/f(vi � xi) 
on xi where s(vi) = 1 if vi 7 0 and 0 otherwise and f(vi � xi) is a kernel density estimator of 
the density of vi � xi. Lewbel’s estimator is robust to heteroscedasticity and distribution. 
A method is also suggested for estimating the distribution of ei. Note that Lewbel’s estimator 
is semiparametric. His underlying model is a function of the parameters B but the distribution 
is unspecified.

12.3.5  COMPARING PARAMETRIC AND SEMIPARAMETRIC ANALYSES

it is often of interest to compare the outcomes of parametric and semiparametric models. 
as we have noted earlier, the strong assumptions of the fully parametric model come at 
a cost; the inferences from the model are only as robust as the underlying assumptions. 
of course, the other side of that argument is that when the assumptions are met, parametric 
models represent efficient strategies for analyzing the data. the alternative, semiparametric 
approaches, relax assumptions such as normality and homoscedasticity. it is important 
to note that the model extensions to which semiparametric estimators are typically 
robust render the more heavily parameterized estimators inconsistent. the comparison 
is not just one of efficiency. as a consequence, comparison of parameter estimates can 
be misleading—the parametric and semiparametric estimators are often estimating very 
different quantities.

Example 12.6   A Model of Vacation Expenditures
Melenberg and van Soest (1996) analyzed the 1981 vacation expenditures of a sample of 
1,143 Dutch families. The important feature of the data that complicated the analysis was 
that 37% (423) of the families reported zero expenditures. A linear regression that ignores 
this feature of the data would be heavily skewed toward underestimating the response of 
expenditures to the covariates such as total family expenditures (budget), family size, age, or 
education. (See Section 19.3.) The standard parametric approach to analyzing data of this 
sort is the Tobit, or censored, regression model,

 yi
* = xi′B + ei, ei ∼ N[0, s2]

 yi = max(0, yi
*),

or a two-part model that models the participation (zero or positive expenditure) and intensity 
(expenditure given positive expenditure) as separate decisions.  (Maximum likelihood 
estimation of this model is examined in detail in Section 19.3.) The model rests on two 
strong assumptions, normality and homoscedasticity. Both assumptions can be relaxed in a 
more elaborate parametric framework, but the authors found that test statistics persistently 
rejected one or both of the assumptions even with the extended specifications. An alternative 
approach that is robust to both is Powell’s (1984, 1986a,b) censored least absolute deviations 
estimator, which is a more technically demanding computation based on the LAD estimator in 
Section 7.3.1. Not surprisingly, the parameter estimates produced by the two approaches 
vary widely. The authors computed a variety of estimators of B. A useful exercise that they 
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did not undertake would be to compare the partial effects from the different models. This is 
a benchmark on which the differences between the different estimators can sometimes be 
reconciled. In the Tobit model, 0E[yi � xi]/0xi = Φ(xi

=B/s)B (see Section 19.3). It is unclear how 
to compute the counterpart in the semiparametric model, since the underlying specification 
holds only that Med[ei � xi] = 0. (The authors report on the Journal of Applied Econometrics 
data archive site that these data are proprietary. As such, we were unable to extend the 
analysis to obtain estimates of partial effects.) This highlights a significant difficulty with the 
semiparametric approach to estimation. In a nonlinear model such as this one, it is often 
the partial effects that are of interest, not the coefficients. But one of the byproducts of the 
more robust specification is that the partial effects are not defined.

In a second stage of the analysis, the authors decomposed their expenditure equation 
into a participation equation that modeled probabilities for the binary outcome 
“expenditure = 0 or 7  0” and a conditional expenditure equation for those with positive 
expenditure.8 For this step, the authors once again used a parametric model based on the 
normal distribution (the probit model—see Section 17.3) and a semiparametric model that 
is robust to distribution and heteroscedasticity developed by Klein and Spady (1993). As 
before, the coefficient estimates differ substantially. However, in this instance, the 
specification tests are considerably more sympathetic to the parametric model. Figure 12.1, 
which reproduces their Figure 2, compares the predicted probabilities from the two models. 
The dashed curve is the probit model. Within the range of most of the data, the models 
give quite similar predictions. Once again, however, it is not possible to compare partial 
effects. The interesting outcome from this part of the analysis seems to be that the failure 
of the parametric specification resides more in the modeling of the continuous expenditure 
variable than with the model that separates the two subsamples based on zero or positive 
expenditures.

8in section 18.4.8, we will label this a “hurdle” model. see mullahy (1986).

FIGURE 12.1   Predicted Probabilities of Positive Expenditure.
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12.4 NONPARAMETRIC ESTIMATION

researchers have long held reservations about the strong assumptions made in 
parametric models fit by maximum likelihood. the linear regression model with normal 
disturbances is a leading example. splines, translog models, and polynomials all represent 
attempts to generalize the functional form. nonetheless, questions remain about how 
much generality can be obtained with such approximations. the techniques of 
nonparametric estimation discard essentially all fixed assumptions about functional 
form and distribution. Given their very limited structure, it follows that nonparametric 
specifications rarely provide very precise inferences. the benefit is that what information 
is provided is extremely robust. the centerpiece of this set of techniques is the kernel 
density estimator that we have used in the preceding examples. we will examine some 
examples, then examine an application to a bivariate regression.9

12.4.1  KERNEL DENSITY ESTIMATION

sample statistics such as mean, variance, and range give summary information about the 
values that a random variable may take. But they do not suffice to show the distribution 
of values that the random variable takes, and these may be of interest as well. the density 
of the variable is used for this purpose. a fully parametric approach to density estimation 
begins with an assumption about the form of a distribution. Estimation of the density is 
accomplished by estimation of the parameters of the distribution. to take the canonical 
example, if we decide that a variable is generated by a normal distribution with mean m 
and variance s2, then the density is fully characterized by these parameters. it follows that

fn(x) = f(x �mn , sn 2) =
1
sn

 
122p

 expJ -
1
2

 ¢ x - mn

sn
≤2 R .

one may be unwilling to make a narrow distributional assumption about the density. the 
usual approach in this case is to begin with a histogram as a descriptive device. consider 
an example. in Example 15.17 and in Greene (2004c), we estimate a model that produces 
a conditional estimator of a slope vector for each of the 1,270 firms in the sample. we 
might be interested in the distribution of these estimators across firms. in particular, the 
conditional estimates of the estimated slope on ln sales for the 1,270 firms have a sample 
mean of 0.3428, a standard deviation of 0.08919, a minimum of 0.2361, and a maximum of 
0.5664. this tells us little about the distribution of values, though the fact that the mean 
is well below the midrange of 0.4013 might suggest some skewness. the histogram in 
Figure 12.2 is much more revealing. Based on what we see thus far, an assumption of 
normality might not be appropriate. the distribution seems to be bimodal, but certainly 
no particular functional form seems natural.

the histogram is a crude density estimator. the rectangles in the figure are called 
bins. By construction, they are of equal width. (the parameters of the histogram are 
the number of bins, the bin width, and the leftmost starting point. Each is important 
in the shape of the end result.) Because the frequency count in the bins sums to the 
sample size, by dividing each by n, we have a density estimator that satisfies an obvious 

9the set of literature in this area of econometrics is large and rapidly growing. major references which provide an 
applied and theoretical foundation are Härdle (1990), Pagan and Ullah (1999), and Li and racine (2007).
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requirement for a density; it sums (integrates) to one. we can formalize this by laying 
out the method by which the frequencies are obtained. Let xk be the midpoint of the kth 
bin and let h be the width of the bin—we will shortly rename h to be the bandwidth for 
the density estimator. the distances to the left and right boundaries of the bins are h/2. 
the frequency count in each bin is the number of observations in the sample which fall 
in the range xk { h/2. collecting terms, we have our estimator

fn(x) =
1
n

 
frequency in binx

width of binx
=

1
n a

n

i= 1

1
h

 1¢x -
h
2

6 xi 6 x +
h
2
≤,

where 1 (statement) denotes an indicator function that equals 1 if the statement is true 
and 0 if it is false and binx denotes the bin which has x as its midpoint. we see, then, that 
the histogram is an estimator, at least in some respects, like other estimators we have 
encountered. the event in the indicator can be rearranged to produce an equivalent form,

fn(x) =
1
n a

n

i= 1

1
h

 1¢ -
1
2

6
xi - x

h
6

1
2
≤.

this form of the estimator simply counts the number of points that are within one half-
bin width of xk.

albeit rather crude, this “naïve” (its formal name in the literature) estimator is in 
the form of kernel density estimators that we have met at various points,

fn(x) =
1
n a

n

i= 1

1
h

 KJxi - x

h
R , where K[z] = 1[-1/2 6 z 6 1/2].

the naïve estimator has several shortcomings. it is neither smooth nor continuous. 
its shape is partly determined by where the leftmost and rightmost terminals of the 

FIGURE 12.2   Histogram for Estimated bsalesCoefficients.
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histogram are set. (in constructing a histogram, one often chooses the bin width to 
be a specified fraction of the sample range. if so, then the terminals of the lowest and 
highest bins will equal the minimum and maximum values in the sample, and this will 
partly determine the shape of the histogram. if, instead, the bin width is set irrespective 
of the sample values, then this problem is resolved.) more importantly, the shape of 
the histogram will be crucially dependent on the bandwidth itself. (Unfortunately, this 
problem remains even with more sophisticated specifications.)

the crudeness of the weighting function in the estimator is easy to remedy. 
rosenblatt’s (1956) suggestion was to substitute for the naïve estimator some other 
weighting function which is continuous and which also integrates to one. a number of 
candidates have been suggested, including the (long) list in table 12.1. Each of these is 
smooth, continuous, symmetric, and equally attractive. the logit and normal kernels are 
defined so that the weight only asymptotically falls to zero whereas the others fall to zero 
at specific points. it has been observed that in constructing a density estimator, the choice 
of kernel function is rarely crucial, and is usually minor in importance compared to the 
more difficult problem of choosing the bandwidth. (the logit, normal and Epanechnikov 
kernels appear to be the default choices in many applications.)

the kernel density function is an estimator. For any specific x, fn(x) is a sample statistic,

fn(z) =
1
n a

n

i= 1
g(xi � z, h).

Because g(xi � z, h) is nonlinear, we should expect a bias in a finite sample. it is tempting 
to apply our usual results for sample moments, but the analysis is more complicated 
because the bandwidth is a function of n. Pagan and Ullah (1999) have examined the 
properties of kernel estimators in detail and found that under certain assumptions, the 
estimator is consistent and asymptotically normally distributed but biased in finite 
samples.10 the bias is a function of the bandwidth, but for an appropriate choice of h, 
the bias does vanish asymptotically. as intuition might suggest, the larger the bandwidth, 
the greater the bias, but at the same time, the smaller the variance. this might suggest a 
search for an optimal bandwidth. after a lengthy analysis of the subject, however, the 
authors’ conclusion provides little guidance for finding one. one consideration does 
seem useful. For the proportion of observations captured in the bin to converge to the 

10see also Li and racine (2007) and Henderson and Parmeter (2015).

Kernel Formula K[z]

Epanechnikov 0.75(1 - 0.2z2)/25 if � z � … 25, 0 else
normal f(z) (normal density)
Logit Λ(z)[1 - Λ(z)] (logistic density)
Uniform 0.5 if � z � … 1, 0 else
Beta 0.75(1 - z)(1 + z) if � z � … 1, 0 else
cosine 1 + cos(2pz) if � z � … 0.5, 0 else
triangle 1 - � z � , if � z � … 1, 0 else
Parzen 4/3 - 8z2 + 8 � z � 3 if � z � … 0.5, 8(1 - � z � )3/3 if 0.5 6 � z � … 1, 0 else

TABLE 12.1 Kernel Functions for Density Estimation
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corresponding area under the density, the width itself must shrink more slowly than 1/n. 
common applications typically use a bandwidth equal to some multiple of n-1/5 for this 
reason. thus, the one we used earlier is silverman’s (1986) bandwidth, h = 0.9 * s/n1/5. 
to conclude the illustration begun earlier, Figure 12.3 is a logit-based kernel density 
estimator for the distribution of slope estimates for the model estimated earlier. the 
resemblance to the histogram in Figure 12.2 is to be expected.

12.5 PROPERTIES OF ESTIMATORS

the preceding has been concerned with methods of estimation. we have surveyed a 
variety of techniques that have appeared in the applied literature. we have not yet 
examined the statistical properties of these estimators. although, as noted earlier, we 
will leave extensive analysis of the asymptotic theory for more advanced treatments, it 
is appropriate to spend at least some time on the fundamental theoretical platform that 
underlies these techniques.

12.5.1  STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

●● Unbiasedness: this is a finite sample property that can be established in only a very 
small number of cases. strict unbiasedness is rarely of central importance outside 
the linear regression model. However, asymptotic unbiasedness (whereby the 
expectation of an estimator converges to the true parameter as the sample size 
grows), might be of interest.11 in most cases, however, discussions of asymptotic 

11see, for example, Pagan and Ullah (1999, section 2.5.1) and Henderson and Parmeter (2015, section 2.2) on the 
subject of the kernel density estimator.

FIGURE 12.3   Kernel Density for bsales.
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unbiasedness are actually directed toward consistency, which is a more desirable 
property.

●● Consistency: this is a much more important property. Econometricians are rarely 
willing to place much credence in an estimator for which consistency cannot be 
established. in some instances, the inconsistency can be more precisely quantified. For 
example, the “incidental parameters problem” (see section 17.7.3) relates to estimation 
of fixed effects models in panel data settings in which an estimator is inconsistent for 
fixed T but is consistent in T (and tolerably biased for moderate sized T).

●● Asymptotic normality: this property forms the platform for most of the statistical 
inference that is done with common estimators. when asymptotic normality cannot 
be established, it sometimes becomes difficult to find a method of progressing 
beyond simple presentation of the numerical values of estimates (with caveats). 
However, most of the contemporary literature in macroeconomics and time-series 
analysis is strongly focused on estimators that are decidedly not asymptotically 
normally distributed. the implication is that this property takes its importance only 
in context, not as an absolute virtue.

●● Asymptotic efficiency: Efficiency can rarely be established in absolute terms. 
Efficiency within a class often can, however. thus, for example, a great deal can be 
said about the relative efficiency of maximum likelihood and Gmm estimators in 
the class of consistent and asymptotically normally distributed (can) estimators. 
there are two important practical considerations in this setting. First, the researcher 
will want to know that he or she has not made demonstrably suboptimal use of 
the data. (the literature contains discussions of Gmm estimation of fully specified 
parametric probit models—Gmm estimation in this context is unambiguously 
inferior to maximum likelihood.) thus, when possible, one would want to avoid 
obviously inefficient estimators. on the other hand, it will usually be the case that 
the researcher is not choosing from a list of available estimators; he or she has one 
at hand, and questions of relative efficiency are moot.

12.5.2  EXTREMUM ESTIMATORS

an extremum estimator is one that is obtained as the optimizer of a criterion function 
q(U � data). three that have occupied much of our effort thus far are:

●● Least squares: UnLS = argmax[-(1/n)a n
i= 1(yi - h(xi, ULS))2],

●● maximum likelihood: UnML = argmax[(1/n)a n
i= 1ln f(yi � xi, UML)], and

●● Gmm: UnGMM = argmax[-m(data, UGMM)′Wm(data, UGMM)].

(we have changed the signs of the first and third only for convenience so that all three 
may be cast as the same type of optimization problem.) the least squares and maximum 
likelihood estimators are examples of M estimators, which are defined by optimizing 
over a sum of terms. most of the familiar theoretical results developed here and in 
other treatises concern the behavior of extremum estimators. several of the estimators 
considered in this chapter are extremum estimators, but a few—including the Bayesian 
estimators, some of the semiparametric estimators, and all of the nonparametric 
estimators—are not. nonetheless, we are interested in establishing the properties 
of estimators in all these cases, whenever possible. the end result for the practitioner 
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will be the set of statistical properties that will allow him or her to draw with confidence 
conclusions about the data-generating process(es) that have motivated the analysis in 
the first place.

Derivations of the behavior of extremum estimators are pursued at various levels 
in the literature. (see, for example, any of the sources mentioned in Footnote 1 of this 
chapter.) amemiya (1985) and Davidson and mackinnon (2004) are very accessible 
treatments. newey and mcFadden (1994) is a rigorous analysis that provides a current, 
standard source. our discussion at this point will only suggest the elements of the analysis. 
the reader is referred to one of these sources for detailed proofs and derivations.

12.5.3  ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES OF EXTREMUM ESTIMATORS

some broad results are needed in order to establish the asymptotic properties of the 
classical (not Bayesian) conventional extremum estimators noted above.

1. The parameter space (see section 12.2) must be convex and the parameter vector 
that is the object of estimation must be a point in its interior. the first requirement 
rules out ill-defined estimation problems such as estimating a parameter which can 
only take one of a finite discrete set of values. thus, searching for the date of a 
structural break in a time-series model as if it were a conventional parameter leads 
to a nonconvexity. some proofs in this context are simplified by assuming that the 
parameter space is compact. (a compact set is closed and bounded.) However, 
assuming compactness is usually restrictive, so we will opt for the weaker requirement.

2. The criterion function must be concave in the parameters. (see section a.8.2.) this 
assumption implies that with a given data set, the objective function has an interior 
optimum and that we can locate it. criterion functions need not be globally concave; 
they may have multiple optima. But, if they are not at least locally concave, then we 
cannot speak meaningfully about optimization. one would normally only encounter 
this problem in a badly structured model, but it is possible to formulate a model in 
which the estimation criterion is monotonically increasing or decreasing in a parameter. 
such a model would produce a nonconcave criterion function.12 the distinction 
between compactness and concavity in the preceding condition is relevant at this 
point. if the criterion function is strictly continuous in a compact parameter space, then 
it has a maximum in that set and assuming concavity is not necessary. the problem for 
estimation, however, is that this does not rule out having that maximum occur on the 
(assumed) boundary of the parameter space. this case interferes with proofs of 
consistency and asymptotic normality. the overall problem is solved by assuming that 
the criterion function is concave in the neighborhood of the true parameter vector.

3. Identifiability of the parameters. any statement that begins with “the true 
parameters of the model, U0 are identified if …” is problematic because if the 
parameters are “not identified,” then arguably, they are not the parameters of the 
(any) model. (For example, there is no “true” parameter vector in the unidentified 

12in their Exercise 23.6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggest a probit 
model for statewide voting outcomes that includes dummy variables for region: northeast, southeast, west, and 
mountain. one would normally include three of the four dummy variables in the model, but Griffiths et al. carefully 
dropped two of them because, in addition to the dummy variable trap, the southeast variable is always zero when 
the dependent variable is zero. inclusion of this variable produces a nonconcave likelihood function—the parameter 
on this variable diverges. analysis of a closely related case appears as a caveat in amemiya (1985, p. 272).
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model of Example 2.5.) a useful way to approach this question that avoids the 
ambiguity of trying to define the true parameter vector first and then asking if it is 
identified (estimable) is as follows, where we borrow from Davidson and mackinnon 
(1993, p. 591): consider the parameterized model, m, and the set of allowable data 
generating processes for the model, m. Under a particular parameterization m, 
let there be an assumed “true” parameter vector, U(m). consider any parameter 
vector U in the parameter space, Θ. Define

qm(m, U) = plimmqn(U � data).

this function is the probability limit of the objective function under the assumed 
parameterization m. if this probability limit exists (is a finite constant) and moreover, if

qm[m, U(m)] 7 qm(m, U) if U ≠ U(m),

then, if the parameter space is compact, the parameter vector is identified by the 
criterion function. we have not assumed compactness. For a convex parameter space, 
we would require the additional condition that there exist no sequences without 
limit points Um such that q(m, Um) converges to q[m, U(m)].

the approach taken here is to assume first that the model has some set of 
parameters. the identifiability criterion states that assuming this is the case, the 
probability limit of the criterion is maximized at these parameters. this result rests 
on convergence of the criterion function to a finite value at any point in the interior 
of the parameter space. Because the criterion function is a function of the data, 
this convergence requires a statement of the properties of the data, for example, 
well behaved in some sense. Leaving that aside for the moment, interestingly, the 
results to this point already establish the consistency of the m estimator. in what 
might seem to be an extremely terse fashion, amemiya (1985) defined identifiability 
simply as “existence of a consistent estimator.” we see that identification and the 
conditions for consistency of the m estimator are substantively the same.

this form of identification is necessary, in theory, to establish the consistency 
arguments. in any but the simplest cases, however, it will be extremely difficult to 
verify in practice. Fortunately, there are simpler ways to secure identification that 
will appeal more to the intuition:

●● For the least squares estimator, a sufficient condition for identification is that any 
two different parameter vectors, U and U0, must be able to produce different values 
of the conditional mean function. this means that for any two different parameter 
vectors, there must be an xi that produces different values of the conditional mean 
function. You should verify that for the linear model, this is the full rank assumption 
a.2. For the model in Example 2.5, we have a regression in which x2 = x3 + x4. in 
this case, any parameter vector of the form (b1, b2 - a, b3 + a, b4 + a) produces 
the same conditional mean as (b1, b2, b3, b4) regardless of xi, so this model is 
not identified. the full rank assumption is needed to preclude this problem. For 
nonlinear regressions, the problem is much more complicated, and there is no 
simple generality. Example 7.2 shows a nonlinear regression model that is not 
identified and how the lack of identification is remedied.

●● For the maximum likelihood estimator, a condition similar to that for the regression 
model is needed. For any two parameter vectors, U ≠ U0, it must be possible to 

M12_GREE1366_08_SE_C12.indd   484 2/6/17   4:05 PM



 CHaPtEr 12  ✦ Estimation Frameworks in Econometrics 485

produce different values of the density f(yi � xi, U) for some data vector (yi, xi). 
many econometric models that are fit by maximum likelihood are “index function” 
models that involve densities of the form f(yi � xi, U) = f(yi � xi

=U). when this is the 
case, the same full rank assumption that applies to the regression model may be 
sufficient. (if there are no other parameters in the model, then it will be sufficient.)

●● For the Gmm estimator, not much simplicity can be gained. a sufficient 
condition for identification is that E[m(data, U)] ≠ 0 if U ≠ U0.

4. Behavior of the data has been discussed at various points in the preceding text. 
the estimators are based on means of functions of observations. (You can see this 
in all three of the preceding definitions. Derivatives of these criterion functions 
will likewise be means of functions of observations.) analysis of their large sample 
behaviors will turn on determining conditions under which certain sample means 
of functions of observations will be subject to laws of large numbers such as the 
khinchine (D.5) or chebychev (D.6) theorems, and what must be assumed in order 
to assert that “root-n” times sample means of functions will obey central limit 
theorems such as the Lindeberg–Feller (D.19) or Lyapounov (D.20) theorems for 
cross sections or the martingale Difference central Limit theorem for dependent 
observations (theorem 20.3). Ultimately, this is the issue in establishing the statistical 
properties. the convergence property claimed above must occur in the context of 
the data. these conditions have been discussed in sections 4.4.1 and 4.4.2 under 
the heading of “well-behaved data.” at this point, we will assume that the data are 
well behaved.

12.5.4  ASYMPTOTIC PROPERTIES OF ESTIMATORS

with all this apparatus in place, the following are the standard results on asymptotic 
properties of m estimators:

Proofs of consistency of m estimators rely on a fundamental convergence result 
that, itself, rests on assumptions (a) through (d) in theorem 12.1. we have assumed 
identification. the fundamental device is the following: Because of its dependence on 
the data, q(U � data) is a random variable. we assumed in (c) that plim q(U � data) = q0(U) 
for any point in the parameter space. assumption (c) states that the maximum of q0(U) 
occurs at q0(U0), so U0 is the maximizer of the probability limit. By its definition, the 
estimator, Un, is the maximizer of q(U � data). therefore, consistency requires the limit of 
the maximizer, Un, be equal to the maximizer of the limit, U0. our identification condition 
establishes this. we will use this approach in somewhat greater detail in section 14.4.5.a 
where we establish consistency of the maximum likelihood estimator.

THEOREM 12.1  Consistency of M Estimators
If (a) the parameter space is convex and the true parameter vector is a point in 
its interior, (b) the criterion function is concave, (c) the parameters are identified 
by the criterion function, and (d) the data are well behaved, then the M estimator 
converges in probability to the true parameter vector.
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the proof of asymptotic normality is based on the mean value theorem from calculus 
and a taylor series expansion of the derivatives of the maximized criterion function 
around the true parameter vector,2n 

0q(Un � data)

0Un
= 0 = 2n 

0q(U0 � data)

0U0
+

02q(U � data)

0U0U′
 2n(Un - U0).

Each derivative is evaluated at a point U that is between Un and U0, that is, U = wUn +
(1 - w)U0 for some 0 6 w 6 1. Because we have assumed plim Un = U0, we see that the 
matrix in the second term on the right must be converging to H(U0). the assumptions 
in the theorem can be combined to produce the claimed normal distribution. Formal 
proof of this set of results appears in newey and mcFadden (1994). a somewhat more 
detailed analysis based on this theorem appears in section 14.4.5.B, where we establish 
the asymptotic normality of the maximum likelihood estimator.

the preceding was restricted to m estimators, so it remains to establish counterparts 
for the important Gmm estimator. consistency follows along the same lines used earlier, 
but asymptotic normality is a bit more difficult to establish. we will return to this issue 
in chapter 13, where, once again, we will sketch the formal results and refer the reader 
to a source such as newey and mcFadden (1994) for rigorous derivation.

the preceding results are not straightforward in all estimation problems. For 
example, the least absolute deviations (LaD) is not among the estimators noted earlier, 
but it is an m estimator and it shares the results given here. the analysis is complicated 
because the criterion function is not continuously differentiable. nonetheless, consistency 
and asymptotic normality have been established.13 some of the semiparametric and all 
of the nonparametric estimators noted require somewhat more intricate treatments. For 
example, Pagan and Ullah (1999, sections 2.5–2.6) and Li and racine (2007, sections 
1.9–1.12) are able to establish the familiar desirable properties for the kernel density 
estimator fn(x*), but it requires a somewhat more involved analysis of the function and 
the data than is necessary, say, for the linear regression or binomial logit model. the 
interested reader can find many lengthy and detailed analyses of asymptotic properties 
of estimators in, for example, amemiya (1985), newey and mcFadden (1994), Davidson 

13see koenker and Bassett (1982) and amemiya (1985, pp. 152–154).

THEOREM 12.2  Asymptotic Normality of M Estimators
If :

(i) Un is a consistent estimator of U0 where U0 is a point in the interior of the 
parameter space;

(ii) q(U � data) is concave and twice continuously differentiable in U in a neigh-
borhood of U0;

(iii) 2n[0q(U0 � data)/0U0] ¡d
N[0, �];

(iv) for any U in �, lim
nS ∞

Pr[ � (02q(U � data)/0uk0um) - hkm(u) � 7 e] = 0 5 e 7 0 
where hkm(U) is a continuous finite valued function of U;

(v) the matrix of elements H(U) is nonsingular at U0 , then 2n(Un - U0) ¡d
N{0, [H-1(U0)�H-1(U0)]}.
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and mackinnon (2004), and Hayashi (2000). in practical terms, it is rarely possible to 
verify the conditions for an estimation problem at hand, and they are usually simply 
assumed. However, finding violations of the conditions is sometimes more straightforward, 
and this is worth pursuing. For example, lack of parametric identification can often be 
detected by analyzing the model itself.

12.5.5  TESTING HYPOTHESES

the preceding describes a set of results that (more or less) unifies the theoretical 
underpinnings of three of the major classes of estimators in econometrics, least squares, 
maximum likelihood, and Gmm. a similar body of theory has been produced for the 
familiar test statistics, wald, Likelihood ratio (Lr), and Lagrange multiplier (Lm).14 all of 
these have been laid out in practical terms elsewhere in this text, so in the interest of brevity, 
we will refer the interested reader to the background sources listed for the technical details.

12.6 SUMMARY AND CONCLUSIONS

this chapter has presented a short overview of estimation in econometrics. there are 
various ways to approach such a survey. the current literature can be broadly grouped by 
three major types of estimators—parametric, semiparametric, and nonparametric. it has 
been suggested that the overall drift in the literature is from the first toward the third of 
these, but on a closer look, we see that this is probably not the case. maximum likelihood 
is still the estimator of choice in many settings. new applications have been found for 
the Gmm estimator, but at the same time, new Bayesian and simulation estimators, all 
fully parametric, are emerging at a rapid pace. certainly, the range of tools that can be 
applied in any setting is growing steadily.

14see newey and mcFadden (1994).

Key Terms and Concepts

•	Bayesian estimation
•	conditional density
•	copula function
•	criterion function
•	Data-generating 

mechanism
•	Density
•	Empirical likelihood 

function
•	Entropy
•	Estimation criterion

•	Extremum estimator
•	Fundamental probability 

transform
•	Generalized method of 

moments
•	Histogram
•	kernel density estimator
•	m estimator
•	maximum empirical 

likelihood estimator
•	maximum entropy

•	maximum likelihood 
estimator

•	method of moments
•	nonparametric estimators
•	semiparametric estimation
•	simulation-based 

estimation
•	sklar’s theorem
•	stochastic frontier model

Exercise and Question

1. compare the fully parametric and semiparametric approaches to estimation of a 
discrete choice model such as the multinomial logit model discussed in chapter 17. 
what are the benefits and costs of the semiparametric approach?
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