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ON THE POOLING OF TIME SERIES
AND CROSS SECTION DATA!

By YAIR MUNDLAK

In empirical analysis of data consisting of repeated observations on economic units
(time series on a cross section) it is often assumed that the coefficients of the quantitiative
variables (slopes) are the same, whereas the coefficients of the qualitative variables
(intercepts or effects) vary over units or periods. This is the constant-slope variable-
intercept framework. In such an analysis an explicit account should be taken of the
statistical dependence that exists between the quantitative variables and the effects. It is
shown that when this is done, the random effect approach and the fixed effect approach
yield the same estimate for the slopes, the “within” estimate. Any matrix combination of
the “within” and ‘“between’ estimates is generally biased. When the “within” estimate is
subject to a relatively large error a minimum mean square error can be applied, as is
generally done in regression analysis. Such an estimator is developed here from a
somewhat different point of departure.

1. INTRODUCTION

The use of a sample consisting of time series observations on a cross section
constitutes an important problem of empirical research in economics. A simple
version of this problem is concerned with the estimation of a vector of parameters
B in the relation.

(1.1) Y=XB+e

where Y and ¢ are n-vectors, X is a n X k matrix of full rank and 8 is a k vector of
parameters to be estimated. The error term is decomposed into:

(1~2) €i = My + 8+ Uy

where m; and s, are the systematic components, or effects, associated with the ith
economic unit and the #th period (year) respectively; i=1,...,N;t=1,..., T
and n = NT. Thus, it is recognized that X3 does not account for all the systematic
variations in Y.

The question is what effect should the decomposition (1.2) have on the method
of estimation. Basically, two alternative approaches have been suggested, the
“fixed effects” (FE) and the “random effects” (RE) of the analysis of variance.
Each of the two models has been associated with a different estimator, the FE
has resulted in the “within” estimator of covariance analysis [14] whereas the RE
has led to a GLSE [2, 23]. Knowing the variances in question, it is generally true
that the GLSE is BLUE and therefore the current thinking among some writers
has been to prefer this estimator. Furthermore, it has been explained that the gain
in efficiency results from the utilization of the ‘“between” estimator in addition to
the within estimator. Since the GLSE is associated with the RE, its use had to be

! This is a revised and shorter version of [17]. At points, reference is made to [17] for more details.
This work has been supported by an NSF Grant #SOC73-05374A01. I have greatly benefited from
the insight of Gary Chamberlain in discussions of the model. This, as well as the helpful comments of
Zvi Griliches are reflected in the paper.
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70 YAIR MUNDLAK

justified by arguing that economic effects are indeed random and not fixed. This
position is well presented by Maddala [11].

The present state of thinking is unsatisfactory for two major reasons: first, the
suggested rules for deciding whether an effect is fixed or random are at best
inadequate. Second, the proposed GLSE approach has completely neglected the
consequences of the correlation which may exist between the effects and the
explanatory variables. Such a correlation leads to a biased estimator and it is the
elimination of this bias that has originally led to the use of the covariance analysis
estimator [14].

This paper proposes to remedy the situation by first indicating that the whole
approach which calls for a decision on the nature of the effect, whether itisrandom
or fixed, is both, arbitrary and unnecessary. Without a loss in generality, it can be
assumed from the outset that the effects are random and view the FE inference as
a conditional inference, that is, conditional on the effects that are in the sample. It
is up to the user of the statistics to decide whether he wants inference with respect
to the population of all effects or only with respect to the effects that are in the
sample.” This view unifies the two approaches in a well defined form and
eliminates any arbitrariness in deciding about “nature,” in a way which is
influenced by the subsequent choice of a “desirable” estimator.

If the foregoing approach is accepted the question is why would a uniform
approach lead to two competing estimators for 3, the coefficients which do not
vary over individuals. That brings us to the second point which can be stated very
simply: when the model is properly specified, the GLSE is identical to the
“within” estimator. Thus there is only one estimator. The whole literature which
has been based on an imaginary difference between the two estimators, starting
with Balestra and Nerlove [2] is based on an incorrect specification which ignores
the correlation between the effects and the explanatory variables.

It is thus argued that there is a uniform approach and a unique estimator.
Furthermore, to obtain the correct GLSE of 8, it is not necessary to know the
components of variance. If this is the case, the old question of what to do if the
within estimator has a large variance still remains but it is not different in nature
from the question of having too many variables in a regression. One way to deal
with this question is to use a mean square error estimator (MSEE). This is not a
new idea but it is integrated into the discussion here.

The foregoing comments summarize the main points of the paper. In the
remainder of this section we outline the plan of the paper and give some more
detailed results. The model is outlined in Section 2. The formulation takes an
explicit account of the relationships between the effects and the explanatory
variables. Section 3 evaluates the performance of the alternative estimators under
the RE set up. It is shown that the GLSE of 8 is the within estimator. Further-
more, when the effects are not correlated with the explanatory variables, the
within and the between estimators are the same and therefore any weighted
matrix combination thereof will be the same. What has been known in the
literature as the GLSE for the error component model is actually a restricted

2 The move to the unconditional inference requires that the sample be randomly drawn.
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estimator, and when the restriction does not hold it is a biased estimator. A similar
analysis is conducted under the FE model in Section 4.

The MSE estimator is introduced and discussed in Section 5. Basically, this
estimator minimizes the MSE of the estimate of any linear combination of B. It
requires a two stage procedure. The whole motivation for introducing the GLSE
has been to gain efficiency. The question of efficiency is particularly important in
small samples. The variance of the within estimator declines with the size of the
sample as determined by increasing either the number of observations per unit or
the number of units. Thus, any alternative estimator which increases the precision
in small samples at the expense of unbiasedness should have the property of
converging to the within estimator or simply be consistent. As shown in Section 6,
the restricted GLS estimator is inconsistent and asymptotically biased when the
sample increases by increasing the number of units rather than the number of
observations per unit. This is of course the relevant process for increasing the
sample size in economics. In contrast, the MSE estimator converges to the within
estimator when the sample increases either by increasing the number of units or
the number of observations per unit.

Section 7 outlines the analysis for a two way layout where “time effects’ are
added to individual effects. Section 8 outlines the estimation of the variance
components which are necessary for statistical inference and the computation of
the restricted GLS as well as the MSE estimators.

2. THE MODEL
Let us rewrite the basic equation to be estimated:
2.1) Y=XB+Za+u
and assume
22) u=0,0’L), EWX)=E@Ze)=0,

where Z is a matrix of qualitative variables, or dummies, and « is a vector of
effects. We now proceed under the assumption that there is no time effect and
therefore we can write Z = In® e where eris a T-vector on ones. However some
of the discussion is not restricted to qualitative Z and it applies as well to
quantitative Z. To simplify the discussion at this point, it is assumed that the X’s
are deviations from their sample means and the matrix (X, Z) is of full rank. A
more general formulation is taken up in Section 7 below.

The properties of the various estimators to be considered depend on the
existence and extent of the relations between the X’s and the effects. In order to
take ?n explicit account of such relationships we introduce the auxiliary regres-
sion:

2.3) a; = Xum + wi;
averaging over ¢ for a given i:
(24) a; = &ZT + w;.

3 (Ea;| X) need not be linear. However, only the linear expression is pertinent for the present
analysis.
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It is assumed that
2.5)  wi.~(0,w?).

Clearly, 7 =0 if and only if the explanatory variables are uncorrelated with the

effects. Let the projection matrix on the column space of Z be denoted as
K(Z)=2Z(Z'Z)'Z' and its orthogonal complement by M(Z)=1— K(Z). For the
present definition of Z, K(Z)= K = Iy®Jr where Jr = (1/ T)ere T Equation (2.4)
can now be written as an N7 vector: '
(26) Za=KXzw+W)

where W is the NT-vector of w;,.
Combining (2.6) and (2.1) yields:

2.7) Y=XB+K(Xr+W)+U,
(2.8) e=U+KW~(0, 0’ Inr+ TwiK).*
We are now in a position to differentiate between the two models. Under the

random effects we are concerned with the expectation of Y conditional on X and
the grouping, to be denoted by Z. This is given by the systematic part of (2.7):

2.9) E(Y]')=X(B+Kn)

where E(Y]|:)=E(Y|X, Z). On the other hand, the FE model calls for the
expectation of Y conditional on X and the effects to be denoted by Za. This is
given by the systematic part of (2.1):

(2.10) E(Y] -)=XB+Ze

where E(Y]|- -)=E(Y|X, Za).

This is the framework for the subsequent analysis. In the following two sections
we show that the within estimator is the GLS estimator for both models. At the
same time we evaluate the moments of alternative estimators. The various
estimators can all be generated by the expression:’

(2.11) be=AFE)Y,A(F)=(X'FX) 'X'F.

In what follows we consider the following estimators:

Notation Name F
bo OLS Int
by Between K
b. Within M
b, GLS 3!

“ A more general version of assumption (2.5) would call for a decomposmon of w;, into systematlc
and random components with respect to the ith unit. Consequently, var w = a)olm +w?K.Fora given
T, the two components are non- distinguishable and 3 can be ignored without aﬁectmg the analysis.
However a comparison of samples with different T'may reveal such a decomposed variance structure.

5 Unless otherwise indicated, it is assumed that rank F=rank X = k. When this assumption is
violated, a GI should replace the inverse in (2.11).
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2 is the variance of the error term and will be explicitly specified for each of the
cases under consideration. In addition, the estimators will be differentiated by the
restrictions which are imposed on the coefficients.

3. ESTIMATION UNDER THE RE MODEL (CONDITIONAL ON X AND Z)

Under the RE model 8 has to be estimated from equation (2.7). Starting with
the GLSE, the relevant variance is given in (2.8). Consequently

IS = yInr+ 11 TK,
y1=-wi/o* (0’ +Twl), v2=1/0.
Then the GLSE of Band 7 in (2.7) is given by:

(3.1)

bg] [ ( ' ) -1 ]_1 -1
. = , KX X, KX)Y.
62 [2]=[(xx)= wr0] ey
Utilizing (3.1) and the expression for the inverse of a partitioned matrix, we can
obtain after some simplications:

be = b,
33)

7’7"g = bb —'bw,

where b, and b,, are defined in Section 2. Thus, the GLSE is the within estimator
and as such it does not depend on the knowledge of the variance components; in
the present framework it is invariably BLUE.

The present analysis differs from previous discussions on the subject in that
KX appearsin (2.7). The question is how is this estimator affected by when 7 =0
and conversely what happens to estimators which restrict # = 0 when such
restriction is violated. Starting with the first question, if = = 0, b, and b,, have the
same expectation and, therefore, their difference will only reflect sampling errors.
Consequently, any matrix combination of them will also have the same expecta-
tion, a point of subsequent pertinence. The term KXz can also vanish when
KX =0 which implies that there are no between individuals variations in the X’s
(recall that the X’s are measured from their sample means). In this case, no
between regression can be calculated.

We turn now to the second question, the consequence of imposing 7 =0. We
refer to such estimates as restricted estimates. We start with the restricted GLSE
(RGLSE):

(B4)  b,=(XZT'X)'Xx'37'Y.

This is the Balestra-Nerlove estimator.
Utilizing (3.1) we obtain, as shown in [3],

(3.5) _brg = Z\rgbb + (I—/_\rg)_bw

where A, = (X'’ KX + (1/0*(y1+¥2))X’MX) " X'KX. Thus when b, = by, brg = by,
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but in general:

(3.6) Eb|)=8+7

and therefore, by (3.5) and (3.6),
(3.7)  Elbel")=B8+nm.

Thus the estimator is biased.
Another restricted estimator to be considered is the restricted LSE (RLSE), to
be denoted as b,,:

(3-8)  bo=(X'X)"XY.

It can be written as a matrix weighted combination of the between and within
estimators and it is therefore generally biased. Let Ao=(X'X) 'X'KX; then
E(bro|)=B+Acow.

The reason for considering the restricted estimators is that restrictions are likely
to decrease the variance of the estimators. As we have seen, the price for such
possible reduction is the bias. There is therefore a trade off between bias and
variance and the choice of an estimator depends on the weights to be assigned to
the two components. In Table I we summarize the variances and MSE of the
alternative estimators.

TABLE I

RE—VARIANCES AND MEAN SQUARE ERRORS OF ALTERNATIVE ESTIMATORS,
CONDITIONAL ON (X, Z)

Estimator Variance MSE

Unrestricted Estimators
bu» be bo V=0’ (X'MX)" v,

b V, = (0> + Tw?)( X KX)™* M, =V, +77’

Restricted Estimators
_br() ‘/IO =Ar0 ‘/bA :0 + (I_ ArO) Vw (I_ Aro)’ MO = ArOMb/\ :0 + (I - A70) Vw (I - ArO)’
-bfg V'gE’\rngA‘g"' (I_Arg)vw(l_/\rg)’ Mrg=ArgMb'\:-g+ (I_Arg)vw(l_/\rg)’

Clearly, none of the terms in the last column of Table I dominates the others for
all possible values V,,, V;, and 7. By dominance it is meant that any quadratic form
in the difference between two M’s will be uniquely signed for all admissible values
of the matrices in question. We return to this question below.

4, ESTIMATOR UNDER THE FE MODEL (CONDITIONAL ON X AND Za)

The FE model can be viewed as an end by itself so that the conditional
inference, given the particular effects which appear in the sample, is all that
matters. In that case equation (2.3) simply represents the design of the experi-
ment. On the other hand, if the sample is a random sample, the conditional
inference can be also considered as a step in deriving the unconditional inference.
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Under the FE, g is to be estimated from (2.1). The conditional variance is given
in (2.2) and clearly the GLSE of (2.1) is identical to the OLSE. The OLSE of 8 in
(2.1) is simply the within estimator. This remark concludes the statement about
the BLUE. We now turn to examine properties of some of the restricted
estimators.

The RLSE is obtained by omitting Za from (2.1), and it is the same as (3.8). The
moments are:

4.1)  E(bwl--)=B+1m0

where E(bo|- -) represents conditional expectation given X and Za,
@42) Fo=A)Ze,

4.3) V)=’ X'X)".

Again, the restriction is likely to decrease the variance of the estimator. This
however is done at the expense of obtaining a biased estimator, which may have a
larger MSE than that of the unrestricted estimator. To compare the MSE of the
restricted and unrestricted estimator we write:®

44)  M@u|-)-Mbl- )= ADZ(Vs—aa)Z' A(IY

where V; is the variance of the unrestricted L.S. estimator of @. Equation (4.4)
constitutes a special case of a result obtained by Toro—Vizcarondo and Wallace
[22] who also show that (4.4) is positive semidefinite if and only if o' V;'a < 1.7
Thus, when effects exist and the variance of their estimate is not excessively
large the unrestricted L.S. dominates the restricted L.S. in MSE. This result is
repeated hereinorder toemphasize thatthe omission of the variablesisnotpriceless.
We return to this point below.

AsinSection 3, RLSE canbe written as amatrix weighted sum of the between and
within estimators. In a more general form this expression can be written as

4.5) by =Apbs +(I—Ap)bm
(4.6) A, =[(X'KX)+0(X'MX)]"'X'KX.

When 6 =1 the estimator in (4.5) becomes the RLSE. Thus, (4.5) has a general
appearance and it looks like a GLSE. But as noted above, in view of (2.2) the
GLSE is the within estimator. We therefore refer to (4.5) as a pseudo GLSE
(PGLSE). In Section 5 we deal with the optimal selection of weights such as Ap SO
as to minimize the variance of the resulting estimator. It turns out that b, has a
minimum variance when 6 = 1 and for that value b, = b,o. Thus, the scope for the
PGLS is rather limited.

We are left with the two estimators whose MSE are compared in (4.4). It is
possible to dominate these estimators in a MSE sense by deliberately selecting an
estimator to do it. We outline the derivation of such an estimator from two points
of view. However, it should be indicated that such an estimator requires

Referrmg to (b, ) we can wrlte a symmetric expression: &= (Z'M(X)Z)'Z'M(X)Y and
« =0 (ZM(X)Z)™". Using (X'X) '+ A(DZ(Z M(X)Z)"'Z' A(I)= (X' M(Z)X)"" leads to 4.4).
Feldstem [5] obtained a similar result for the case of a simple regression with one left out variable.
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knowledge of o> and a and therefore, in practical applications it can only be
computed in two stages in the same spirit as the RGLSE. In fact, we start the
presentation by deriving a GLS-like estimator the weights of which are obtained
not from the variance of the error term but rather from its MSE. Let m = Za,

@47)  E=E{(Y-XB)Y-XB)|X, m}=mm'+0"Inr,
and obtain

(4.8) b.=X3"'X)"'Xx27'Y.

It can be shown that®

4.9)  E(m| -)=B8+#0(1-5)

where 1-5=0*(0*+Ww'w)™", w=MX)m,

(4.10)  M(by|  )=0*(X'X)" + Frof1o(1 =) =M.
This estimator dominates b, since

(4.11) M,—M,, =j7oto

and (4.11) is positive semidefinite. Thus, we conclude that if some variables are
omitted and their coefficients are known, it would be better to add the omitted
part to the error term and use a GLS-like estimator rather than restricted LS. This
is a general result and it is not limited to qualitative variables.

A comparison of b, with b, indicates that it also dominates the within
estimator. This can be seen by comparing (4.10) and V,, using the result of
footnote 6:

4.12) M| )=Mbul|- )= ADZ[Vs—a2'1-HIZ'ATY

where (4.12) is a positive semidefinite matrix.” The implication is that if m is
known, then it need not be estimated and it could be used in deriving a MSE
estimator.

The main purpose of introducing this MSE estimator is suggestive. It cannot be
used as such since m is not known. If it were known, it could be used for deriving a
modified LS estimator which dominates all the others:

4.13) b=AUINY-m)~(B o’ (X'X)).

An alternative approach to the construction of the MSE estimator is discussed in
the next section.

5. AN ALTERNATIVE VIEW OF THE VARIOUS ESTIMATORS

Inintroducing the MSEE it is helpful first to consider the GLSE from a different
point of view. Assume that we want to estimate a linear function in 8, ¢ = ¢'B, with
8 Note that for large samples 1— 3 is close to zero.

Z (4.12) iis positive semidefinite if and only if @' Vs '@ <1/(1— ). Using the definitions, a' Vz'a =
o w'w=p/(1-p)<1/(1-p).
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¢ given. The problem is to select' A so as to minimize V(tﬁg)svar (c'bg). Since
cov (bs, bw)=0, we can write Va=AV,A'+([—A)V,, (I—A) where V, =var b,,
etc. The result is given by:

(5.1) A=V (Va+ V)=V + Vi lvil

The resultant value of A is the same as that obtained by GLS. We can therefore
consider the GLS as the estimator which combines the various orthogonal
estimators of B so as to minimize the variance of ¢. The proof is obtaineg by
considering an alternative estimator, by = Hb, + (I — H)b,, to be used in Ug=
¢'by. Comparing the variances of the two estimators, we obtain after some
simplifications:

(52)  V@)- V()=
H{H=)(Vo+ VW )H =AY =2H- M) V,, = (Vs + V., M Tl

Selecting A according to (5.1) annihilates the second term on the right-hand side
and makes (5.2) nonnegative for any H and .

In a similar way it is possible to construct a minimum MSE estimator. The
problem can be formulated as follows:

Select A,, such that the MSE of 4/;,,, = ¢'bm as an estimator of ¢’8 is minimized
for any ¢ and where

(5'3) bm =/\mbb+(I—Am)_bw~1o
The result is:
(4)  An=Mp'+M) M =M, (M, +M,)".

To apply (5.4) in the model under consideration, assuming the RE, Table I and
other results of Section 3 are used. It can then be shown that:

(5.5)  E(bm)=8+Anm,

(5:6)  Vu=(My"+ V) (MG VM + VMG + VI
By writing M, explicitly and simplifying it can be shown that:
5.7) 'Mz—M,)c=0

and the superiority of b,, in the MSE sense is demonstrated.

The estimator b,, cannot be utilized directly since the variances and biases in
question are not known . However, it is possible to follow the two stage procedure
as used also in obtaining the RGLS estimator. In addition to the estimators of the
variance we need also an estimate of 7. Such an estimate can be obtained from:

(5.8) F=by—bw

and the weight for the MSE estimator is derived from:
(5.9 A=V, 0M+V,)?

19 Ct. Feldstein [5].
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where _ indicates an estimator and:**
(5.10) M, =V, +57".

We do not deal here with the distribution of this two stage estimator. However its
limiting value is considered in the next section.

The RGLS and the MSE estimators can be considered as parts of a more
general framework. Suppose, we have r estimators b; of 8,j=1,...,r. Let b be
the rk vector of such estimators. Then, E(b) can be written as

(5.11) E(b)=A1B+A.m.

The variance of b is denoted by X, a square nonsingular matrix of order kr. The
problem is how to combine the components of » in order to obtain a final
estimator. Assuming first a knowledge of X,, we can derive the maximum
likelihood estimator (ML):

(5.12) '? =(A'Z;"A) A S, b
T
This estimator is unbiased as can be verified immediately in view of (5.11).
Consequently, we already know from the foregoing discussion that it is not
necessarily the most efficient MSE estimator.
In the problem under consideration we have A; =¢,® I, and A, = (¢k) and

(5.13) B=b., F=by—b

and we are back with the within estimator.

The present formulation of the problem allows us to utilize the discussion in
Section 4 above. Since we are mainly interested in estimating 8, we can omit A, 7
to gain precision and obtain

(5.14) B=(A1Z;'A1)'A1Z3D.

With A, =¢,®1I, (5.14) is the RGLS estimator. From the discussion in Section 4
we also know that the MSE can be reduced by adding the omitted term A, to the
error and replacing X, in (5.14) by M,:

(5.15) B=(A'M;'A)'AIM'D

where M, = 3, + A,7rmr' A5. The estimator in (5.15) is simply our MSE estimator.

We have thus produced a framework which yields the three estimators, the
within, as a ML, the RGLS and the MSE as special cases. This approach can be
further generalized as it is shown in [17, Section 6].

6. INCREASING THE SIZE OF THE SAMPLE

We now examine the properties of the estimators as the size of the sample
increases. In so doing, we differentiate between an increase in the number of
observations, 7, taken on each individual, and the increase in the number of

11 2 can be used to correct brg SO as to make it unbiased; the result is b,,.
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individuals, N. It is assumed that the design matrices are bounded and their limits
exist:

. 1_, — . 1._, =

lim (—T—X KX) =By lim (?X MX) = Wi,

T—->o00

6.1) _ 1., _
im (NX MX) - Wy,

1
N->o©

. 1_, 5
lim (NXKX)—BT,

N->00
where all the limits are positive definite matrices. We can now obtain:

62)  lim V(bsl-)=wiB¥,
(63)  lim V(&s|)=o0.

Consequently, the between variance can be reduced only by increasing the
number of individuals and not by increasing the number of observations per
individual. Referring to (3.6) it is seen that b, is asymptotically biased and from
(6.3), Pnoo lim b, = B + 7. Consequently

lim M(bs|-)=wiBY + 77,

lim M(bs|")=77".
The variance of the within estimator decreases with either T or N:
(64)  lim V(bul-)=0= lim V(b|").

Therefore b,, is asymptotically unbiased and consistent.

These results make it possible to evaluate the plim of the other estimators which
are expressed as weighted combination of the within and between estimators. The
following comments can be made, omitting the technical details.

1. The weight Ao of the RLSE has a limit. Therefore plimn,o bro# B if
plimn-o by # B. On the other hand, b,o does not converge with 7.

2. The RGLSE estimator converges to b,, with T since limr.c Arg=0. On the
other hand, limy-« A, # 0 and therefore plimy., b, # 8 if plim b, # 8.

3. The MSE converges to b, [plim (b, — b, )= 0] with both N and T since in
both cases lim A,,, = 0.

Of the two limits considered, the one generated by increasing N is by far more
important for two reasons. First, in general, the number of observations per
individual (T)is limited and relatively small, and second, if it were not small then it
would be inappropriate to assume that the effects a; remain constant. Since the
observations are periods, usually a year, it would not be reasonable to assume that
individuals do not change. In fact, a more realistic approach would be to assume
that individuals constantly change but when observed for short time intervals such
changes could be neglected [16]. However, it is in this process that the RGLSE
fails and the MLSE survives. They are both biased for finite samples, but by
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increasing N the bias of the MLSE approaches zero whereas that of the RGLSE
does not.

A similar evaluation can now follow conditional on the FE. However in this case
it does not make sense to trace the effect of N » 0. If N becomes very large, one
would be interested not in the specific effect of each individual but rather in the
characteristics of the population and will therefore carry the analysis within the
RE framework.

Increasing T results in the decline of both variances:

(6.5  lim V(5| -)=0,  lim V(bu|--)=0.

It is therefore concluded that the between estimator is asymptotically biased
and inconsistent. Similar properties are attributed to b, and the pseudo-GLS
estimator b, defined in (4.5) and (4.6) since the weights are invariant to the sample
size. Different results are obtained for the MSE estimator b,,. Since limr.« (1—
p)=0, we have

(6.6) lim V(bnm|--)=0  and lim E(bm|--)=8

and the estimator is consistent and asymptotically unbiased.

7. INTRODUCING TIME EFFECT

The introduction of time effects does not introduce conceptual problems and
this is primarily due to the fact that time will only represent here another “lay
out.” Itis introduced here briefly in order to give a complete technical framework
which is utilized in the next section for estimating the components of variance.

The basic equation is still given by (2.1) except that we now decompose
Za =Z a1+ Zra, where m = Z,a; and s = Z,a, are the vectors representing unit
and time effects respectively. The observations are arranged by units, beginning
with the T readings on the first unit, etc.

Then Z,=IxQer, Z,=enx®Ir. We now have to be more specific about the
intercept. Let Zo=enr and rank X =k —1."* The projecting matrices on the
vector spaces generated by the columns of Z;, Z,, and Z, respectively are:

(71)  Ki+Ko=Ix®Jr, Ky+Ko=Iv®Ir, Ko=Jr.
Note that K; + K is the same as K in the previous sections. Also
(7.2) KiK;=K;Ko=K,K,=0

and therefore

(73) K1Z2=K120=K221=K220=0.

12 . . R
There are k —1 columns in X and the requirement of zero means is eliminated.
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Rewrite the basic equations:

(74) Y=XB+Zoao+Zia1+Zra2+u, u~(0,0%Inr),

(7.5) m=Za,=(K;+Ko) X7+ (K1 + Ko)ws, wi1~[0, Twi (K, + Ko)],
(7.6) s=Zra>=(K>+Ko)Xm+(Kz+Ko)wa, w2~[0, No3(K,+ Ko)],

where we have used (K;+Ko)Z;=Z, j=1,2. We also assume that the error
components ¥, w1, and w, are independent for all i and ¢.

Combining (7.4) and (7.6) and following the procedure of Section 3 we can
derive Table II for the RE model.

TABLE II
BIiAs AND VARIANCE CONDITIONAL ON X AND Z OF VARIOUS WITHIN AND BETWEEN
ESTIMATORS?
Estimator F Bias Variance
1) .1.73 M;; 0 FA(X'MX)!
2 b K1 m (e*+ To)(X' K, X)!
B b Ko m (0®+ Nw3)(X' K, X) ™
4) b, My AMLK X7, (X' M1 X) [02(X' My X)+ Now2(X K, X)|(X' M, X)™!
() b M, AMRK Xm (XM XY [0 (X' M, X) + Tw 3 (X' K1 X)|(X' M, X) !

6) bo Moy ANK Xmi+K:Xm5) (XMoX) ' X' Mo[o”Inr+ TwiK;+ N3 Ko )Mo X(X'Mo X) ™!

2 Mo=InT— Ko, My =INT—K1~Ko, Ma= INT—K2— Ko, M12=INT~ K1~ K3~Kp; when rank F< k—1, the particular
estimator is ignored.

A similar evaluation now follows for the FE. This is done by applying F to (7.4),
recalling (7.2). The results are summarized in Table III.

TABLE III

BiAs AND VARIANCE CONDITIONAL ON X, m AND s OF VARIOUS
WITHIN AND BETWEEN ESTIMATORS

Estimator F Bias Variance
by Mi, 0 *(X'MpX) ™
b K, A(K)m XK X)!
b K, A (K)s (XK, X)!
b., M, A (Mys X'M X))
b"v M, A (M)m UZ(X'sz)_l
bo M, AMYm +5) P (X'MeX)?

See footnote to Table II.

The MSE examination can now be written as a matrix weighted combination of
the alternative estimators. Assuming T, N >k — 1, then:

(7.7)  bm=A1bp+A2bs+(T—A)b%
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where according to [17, Section 6] we have

M+ VM, + VWJ -1
M+ V.M +V,

where My; = M(b}), May, = M(by), Vi, = V(bi), and My, = m5. Note that we
utilize the fact that the three estimators are orthogonal and that the within
estimator is also unbiased. _

If b}, cannot be computed we can use b, instead. However, b, is orthogonal to
b}, but not to b’ ; consequently the simple form (7.8) cannot be used and the
weight matrixes will have to be computed from a somewhat more detailed form
[17].

The examination of the behavior of the estimators as the sample size increases
follows directly the analysis of Section 6. Assuming the limits exist, the following
remarks can be made. The RGLS estimator based on the first three estimators in
Table II does not converge in distribution to the within estimator unless both T'
and N - o, Since it is unlikely to have a large 7, b,, will be inconsistent. On the
other hand, the MSEE tends to the within estimator in large samples, regardless of
whether the increase is in N or T."*

As indicated in Section 6, it is not particularly relevant to consider the limits
under the FE since as the size of the sample increases in a particular dimension,
interest would shift toward characterization of the propulation in terms of a fewer
parameters.

The discussion has been conducted for the FE and RE models. It is also possible
to consider mixed models where some effects are random whereas others are
fixed. Such a specification simply dictates the conditional variables and as such the
foregoing results are immediately applicable.

Finally when ¢ stands for time and T is sufficiently large, it would be unrealistic
to assume that the individuals do not change in a differential way as the model
assumes. As indicated in the previous section, it is more realistic to assume that
individuals do change differentially but at a pace that can be ignored for short time
intervals. Under this assumption, it would be desirable to allow for interaction
between i and . Such interaction introduces too many parameters and a simplify-
ing form has to be used. A possible formulation for the effects, i and ¢, is:

(7.8)  (Ar2)= (VWVW)[

Wit = Yoi T V1l
Such a formulation was used empirically in Mundlak [16] and Evenson and Kislev
[4, Ch. 5].

13 Nerlove [18, p. 395] raises the question why treating the effects as fixed rather than random
should become asymptotically unimportant. “After all as N, T'- o there are infinite number of such
parameters, their number increases just as fast as the number of pieces of new information available as
the sample size increases. The solution to the puzzle isin fact that we are not estimating them but only
B... 7" Itisnot quite clear what is meant here by pleces of information. However it should be noted that
under the FE there are T—1 degrees of freedom in estimating a; and N—1 degrees of freedom in
estimating a,. Obviously those increase with N and T. The degree of freedom in estimating 3 increase
with the product (N —1)(T—1). The reason why plimy, 7w (b;g —bw) =0 under the assumption of
71 = 7, = 0, which corresponds to the model examined by Nerlove, is that b, b,,, b}, are all unbiased
and converge in quadratic mean to 8.
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8. ESTIMATING THE VARIANCE COMPONENTS

In order to make statistical reference in the RE model it is necessary to estimate
the components of variance. Such estimators are also required for obtaining the
RGLSE and the MSEE.'* In what follows we present unbiased estimators based

on the residuals of the various regressions.

To derive those, let F Y= FXbr, and the residual is

(8.1) Ve=F(Y-Y)=M(FX)FY

where M(FX) = Iny— FX(X'FX) ' X'F. Under the RE,

(8.2) Ve=M(FX)Fe

where ¢ is the combined error term. Then

(8.3) E(VEVr)=E(¢'FM(FX)Fg)=tr M(FX)FZ..

The degrees of freedom in each case are given by tr M(FX)F =tr F—(k —1),
assuming of course that tr F'= k. The results are presented in Table IV. The last
column of the Table gives the expected value of the error mean square, denoted

by sZ,
TABLE IV
ESTIMATORS FOR COMPONENTS OF VARIANCE?
F tF EE’F= V%VF:'
tr F—(k—1)
1) My, (N=-1)T-1) a?
) K, N-1 a’+Tw25
(3) K> T-1 02+ Nw?
4) M, T-1 2 [(T-1)—tr (XM X) Y XK, X)) w3
4 M, N( ) o N(T—l)—(k—l)[( )—tr (X'M1 X)) (X' K> X)|wy
5) M. - e [(N-1)- "M, X) (XK. 2
5) M, T(N-1) o T(N—l)—k—I[(N —-tr (X' Mo X) (XK1 X)]w1
1
6) M, NT-1 i+ {IIN=1)=tr (X' MoX) {(X'K X)) Tw?

NT-k

+[(T-1)—tr (X' Mo X) *(X'K,X)|New3}

2 In cases where tr F< k, ignore the corresponding line in the table.

For N> k, w7 is estimable from lines (1) and (2) of the table. Such an estimate is
independent of @3 and holds true also when w3 = 0. Consequently, it is also the
appropriate estimator for the one way layout with no time effect. Similarly, if
T=k, w3 is estimable from lines (3) and (1). If however T is small, w3 can be

estimated from lines (4) and (1).

14 Alternative estimators exist for estimating the variance components. Maddala and Mount [12]
examine the effect of using alternative estimators of the components on the MSE of the resulting GLS
estimator, using the Monte Carlo technique. They find the results in general to be insensitive to most of

the alternatives.
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The results of Table IV are basically the analysis of variance results modified for
the model under consideration. This modification has an important implication.
Note that we estimate w; rather than the unconditional variance O’i,- The
difference reflects the true correlation coeflicients of equations (7.5) and (7.6). Let
for instance 1—a? = w3. When the systematic component of (7.5) constitutes an
importantrole, 1 — pf, and therefore w? will be relatively small. Thus, the estimate
based on lines (1) and (2):

1
B4 b=k 5k

is an unbiased estimator of a small number and the probability of such a number to
be negative increases with p3. This finding bears on the negative values that are
sometimes obtained for estimators like (8.4). To avoid this problem Nerlove [19]
used as an estimator of the between variance component the 342 where & is the
LS estimate of «;, or simply the estimate of the fixed effects a;. Such an estimate
constitutes an upper limit for est w$ and, aside from some correction factor, it is
appropriate only for the case of pj=0, that is when there is no auxiliary
regression. The relative importance of the auxiliary regression in the total
variance of o2 was computed for a specific problem in Mundlak [14, p. 53; 15,
p. 76]. The results vary depending on the estimator, between 0.4 to 0.5.

It is of some interest to obtain E (SﬂX, m, ), that is under the FE structure. The
result has the following structure:

2 _ 2 (@Z)FM(FX)F(Za)
8.5) E(SEX, m,s)=0"+ wF—(k-1) .

For F=K; and K, the second term on the right-hand side of (8.5) has a simple
interpretation; it is equal to the sum of the computed residuals from the particular
auxiliary regression. For instance,

N
(8.6) mKMEK X)Kim=TY w?
i=1

and we can then write
2
TN, Wi

~2=
®7)  Tat=—3

and a similar expression can be obtained for No3 by letting F= K. Of course,
when F = M,, the second term on the right-hand side of (8.5) vanishes. (8.7) can
be considered as an estimate of Tw? only if a; were random.

Hebrew University of Jerusalem
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