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1. Introduction and summary 

The chapter has four parts: the specification of linear models; the specification of 
nonlinear models; statistical inference; and empirical applications. The choice of 
topics is highly selective. We shall focus on a few problems and try to develop 
solutions in some detail. 

The discussion of linear models begins with the following specification: 

Y,, = Px,, + c, + u rf, (1.1) 

E(~;rIx,~r...,x,~,c;) = 0 (i=l ,..., N; t=l,..., T). 0.2) 

For example, in a panel of farms observed over several years, suppose that y,, is a 
measure of the output of the i th farm in the t th season, xir is a measured input 
that varies over time, ci is an unmeasured, fixed input reflecting soil quality and 
other characteristics of the farm’s location, and uir reflects unmeasured inputs that 
vary over time such as rainfall. 

Suppose that data is available on (x,i ,..., xir, yil ,..., yir) for each of a large 
number of units, but ci is not observed. A cross-section regression of yil on xii will 
give a biased estimate of p if c is correlated with x, as we would expect it to be in 
the production function example. Furthermore, with a single cross section, there 
may be no internal evidence of this bias. If T > 1, we can solve this problem given 
the assumption in (1.2). The change in y satisfies: 

and the least squares regression of yi2 - yi, on xi2 - xii provides a consistent 
estimator of p (as N + co) if the change in x has sufficient variation. A generaliza- 
tion of this estimator when T > 2 can be obtained from a least squares regression 
with individual specific intercepts, as in Mundlak (1961). 

The restriction in (1.2) is necessary for this result. For example, consider the 
following autoregressive specification: 

It is clear that a regression of y,, - y,,,_ 1 on ~,,~_i - yi,,_, will not provide a 
consistent estimator of /?, since uit - u,,,_i is correlated with y, ,_ 1 - y, t_2. 
Hence, it is not sufficient to assume that: 

E( Uirlx,,, e;) = 0. 

Much of our discussion will be directed at testing the stronger restriction in (1.2). 
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Consider the (minimum mean-square error) linear predictor of ci conditional on 
x;i,...,x,r: 

E*( c,lxil,. . ., x,~) = 11 + h,xi, + . . . + &+. (1.3) 

Given the assumptions that variances are finite and that the distribution of 

(x rl,. . . ,x,~, ci) does not depend upon i, there are no additional restrictions in 
(1.3); it is simply notation for the linear predictor. Now consider the linear 
predictor of y,, given x,i,. . . ,xjT: 

E*(y,,Ix;p..., Xi,) = 5, + 77*1x,1 + . . . + ?rgxg. 

Form the T x T matrix I7 with T,~ as the (t, s) element. Then the restriction in 
(1.2) implies that II has a distinctive structure: 

where I is the T X T identity matrix, 1 is a T X 1 vector of ones, and x’= 

(A i,. . . ,A,). A test for this structure could usefully accompany estimators of /3 
based on change regressions or on regressions with individual specific intercepts. 
Moreover, this formulation suggests an alternative estimator for /3, which is 
developed in the inference section. 

This test is an exogeneity test and it is useful to relate it to Granger (1969) and 
Sims (1972) causality. The novel feature is that we are testing for noncausality 
conditional on a latent variable. Suppose that t = 1 is the first period of the 
individual’s (economic) life. Within the linear predictor context, a Granger 
definition of “y does not cause x conditional on a latent variable c” is: 

E*(X;,r+1lX;l,...rxir, Y,, ,...,y,,,ci)=E*(x;,,+llx;l,...,x,,,~,) 

(t =1,2,...). 

A Sims definition is: 

E*(~i~lX~l,Xi~,...,Ci)=E*(~;rlXil,...,Xir,Ci) (t =1,2,...). 

In fact, these two definitions imply identical restrictions on the covariance matrix 

of (x,1,...,+, Y,l,..., yiT). The Sims form fits directly into the 27 matrix frame- 
work and implies the following restrictions: 

n = B + yX’, (I .4) 

where B is a lower triangular matrix and y is a T X 1 vector. We show how these 
nonlinear restrictions can be transformed into linear restrictions on a standard 
simultaneous equations model. 
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A II matrix in the form (1.4) occurs in the autoregressive model of Balestra and 
Nerlove (1966). The yh’ term is generated by the projection of the initial 
condition onto the x ‘s. We also consider autoregressive models in which a 
time-invariant omitted variable is correlated with the x ‘s. 

The methods we shall discuss rely on the measured xi, changing over time 
whereas the unmeasured c, is time invariant. It seems plausible to me that panel 
data should be useful in separating the effects of xi, and ci in this case. An 
important limitation, however, is that measured, time-invariant variables ( zi) can 
be absorbed into c,. Their effects are not identified without further restrictions 
that distinguish them from ci. Some solutions to this problem are discussed in 
Chamberlain (1978) and in Hausman and Taylor (1981). 

In Section 3 we use a multivariate probit model to illustrate the new issues that 
arise in models that are nonlinear in the variables. Consider the following 
specification: 

_?,:I = Px,, + c, + u 1,) 

Y,, =l, if ji, 2 0, 

= 0, otherwise (i=l ,..., N; t =l,..., T), 

where, conditional on xii,. . . ,xIT, c,, the distribution of ( uil,. . . , uiT) is multi- 
variate normal (N(O,X)) with mean 0 and covariance matrix B = (TV). We 
observe (xil,...,xiT, yil , . . . J,~) for a large number of individuals, but we do not 
observe c,. For example, in the reduced form of a labor force participation model, 
yir can indicate whether or not the ith individual worked during period t, xi1 can 
be a measure of the presence of young children, and ci can capture unmeasured 
characteristics of the individual that are stable at least over the sample period. In 
the certainty model of Heckman and MaCurdy (1980), ci is generated by the 
single life-time budget constraint. 

If we treat the c, as parameters to be estimated, then there is a severe incidental 
parameter problem. The consistency of the maximum likelihood estimator re- 
quires that T + co, but we want to do asymptotic inference with N --, cc for fixed 
T, which reflects the sample sizes in the panel data sets we are most interested in. 
So we consider a random effects estimator, which is based on the following 
specification for the distribution of c conditional on x: 

C,=l)+hlXil+ *-* +hTXiT+u,, (1.5) 

where the distribution of ui conditional on xii,. . . ,xiT is N(0, u,‘). This is similar to 
our specification in (1.3) for the linear model, but there is an important dif- 
ference; (1.3) was just notation for the linear predictor, whereas (1.5) embodies 
substantive restrictions. We are assuming that the regression function of c on the 
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x’s is linear and that the residual variation is homoskedastic and normal. Given 
these assumptions, our analysis runs parallel to the linear case. There is a matrix 
I7 of multivariate probit coefficients which has the following structure: 

where diag{ CY~, . . . , } a diagonal 

T. We can also test whether I7 in fact has this 
structure. 

A quite different treatment of the incidental parameter problem is possible with 
a logit functional form for P( y,, = ~Ix,~, c,). The sum c~=,y,, provides a sufficient 
statistic for ci. Hence we can use the distribution of y,,,. . .,y;, conditional on 

Xil,...,X,rY c,y,, to obtain a conditional likelihood function that does not depend 
upon ci. Maximizing it with respect to j3 provides an estimator that is consistent 
as N + cc for fixed T, and the other standard properties for maximum likelihood 
hold as well. The power of the procedure is that it places no restrictions on the 
conditional distribution of c given x. It is perhaps the closest analog to the change 
regression in the linear model. A shortcoming is that the residual covariance 
matrix is constrained to be equicorrelated. Just as in the probit model, a key 
assumption is: 

(1.6) 

and we discuss how it can be tested. 
It is natural to ask whether (1.6) is testable without imposing the various 

functional form restrictions that underlie our tests in the probit and logit cases. 
First, some definitions. Suppose that t = 1 is the initial period of the individual’s 
(economic) life; an extension of Sims’ condition for x to be strictly exogenous is 
that y, is independent of x,, i, x,, *, . conditional xi,. . An of 

condition “y not x” that is of 
y, on ,..., Unlike linear case, strict 

is than Noncausality that be 
dent x,+i, . . . conditional on xi,. . . ,x, and on y i,...,_y_i. If x is strictly 
exogenous and in addition y, is independent of xi,. . . ,x,_ 1 conditional on x,, then 
we shall say that the relationship of x toy is static. 

Then our question is whether it is restrictive to assert that there exists a latent 
variable c such that the relationship of x to y is static conditional on c. We know 
that this is restrictive in the linear predictor case, since the weaker condition that 
x be strictly exogenous conditional on c is restrictive. Unfortunately, there are no 
restrictions when we replace zero partial correlation by conditional independence. 
It follows that conditional strict exogeneity is restrictive only when combined with 
specific functional forms-a truly nonparametric test cannot exist. 
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Section 4 presents our framework for inference. Let += (1, xii,. . . , x,r, 

Y rl,. . . , Y,r) and assume that 5 is independent and identically distributed (i.i.d.) 
for i = 1,2,. . . . Let w, be the vector formed from the squares and cross-products 
of the elements in r,. Our framework is based on a simple observation: the matrix 
II of linear predictor coefficients is a function of E(wi); if c is i.i.d. then so is w,; 
hence our problem is to make inferences about a function of a population mean 
under random sampling. This is straightforward and provides an asymptotic 
distribution theory for least squares that does not require a linear regression 
function or homoskedasticity. 

Stack the columns of II’ into a vector 7~ and let B = h(p), where p = E( w;). 
Then the limiting distribution for least squares is normal with covariance matrix: 

We impose restrictions on II by using a minimum distance estimator. The 
restrictions can be expressed as p = g(8), where 8 is free to vary within some set 
‘I’. Given the sample mean W = C~,,w,/N, we choose fi to minimize the distance 
between H1 and g( t9), using the following distance function: 

where p( w;) is a consistent estimator of V( wi). This is a generalized least squares 
estimator for a multivariate regression model with nonlinear restrictions on the 
parameters; the only explanatory variable is a constant term. The limiting 
distribution of b is normal with covariance matrix: 

An asymptotic distribution theory is also available when we use some matrix 
other than ?‘-‘( w;) in the distance function. This theory shows that VP ‘( w;) is the 
optimal choice. However, by using suboptimal norms, we can place a number of 
commonly used estimators within this framework. 

The results on efficient estimation have some surprising consequences. The 
simplest example is a univariate linear predictor: E*(_Y,[x,~, x,~) = rrO + rrtxil + 

T2xi2. Consider imposing the restriction that r2 = 0; we do not want to maintain 
any other restrictions, such as linear regression, homoskedasticity, or normality. 
How shall we estimate a,? Let ii’ = (7i,, 7j2) be the estimator obtained from the 
least squares regression of Y on x1, x2. We want to find a vector of the form (8,O) 
as close as possib.le to (?il, 7j2), using V-‘(e) in the distance function. Since we 
are not using the conventional estimator of V( 7j), the answer to this minimization 
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problem is not, in general, to set 8 = by,,, the estimator obtained from the least 
squares regression of y on x1. We can do better by using b,.,, + r7j2; the 
asymptotic mean of 7j2 is zero if rr2 = 0, and if byx, and 7j2 are correlated, then we 
can choose r to reduce the asymptotic variance below that of b,,,. 

This point has a direct counterpart in the estimation of simultaneous equations. 
The restrictions on the reduced form can be imposed using a minimum distance 
estimator. This is more efficient than conventional estimators since it is using the 
optimal norm. In addition, there are generalizations of two- and three-stage least 
squares that achieve this efficiency gain at lower computational cost. 

A related application is to the estimation of restricted covariance matrices. 
Here the assumption to be relaxed is multivariate normality. We show that the 
conventional maximum likelihood estimator, which assumes normality, is asymp- 
totically equivalent to a minimum distance estimator. But that minimum distance 
estimator is not, in general, using the optimal norm. Hence, there is a feasible 
minimum distance estimator that is at least as good as the maximum likelihood 
estimator; it is strictly better in general for non-normal distributions. 

The minimum distance approach has an application to the multivariate probit 
model of Section 3. We begin by estimating T separate probit specifications in 
which all leads and lags of x are included in the specification for each y,,: 

P(y;,=~lx,l,...,x,,)=F(~~r,,+~~lx,+ ... +qTtTx;& 

where F is the standard normal distribution function. Each of the T probit 
specifications is estimated using a maximum likelihood program for univariate 
probit analysis. There is some sacrifice of efficiency here, but it may be out- 
weighed by the advantage of avoiding numerical integration. Given the estimator 
for II, we derive its asymptotic covariance matrix and then impose and test 
restrictions by using the minimum distance estimator. 

Section 5 presents two empirical applications, which implement the specifica- 
tions discussed in Sections 2 and 3 using the inference procedures from Section 4. 
The linear example is based on the panel of Young Men in the National 
Longitudinal Survey (Parnes); y, is the logarithm of the individual’s hourly wage 
and x, includes variables to indicate whether or not the individual’s wage is set by 
collective bargaining; whether or not he lives in an SMSA; and whether or not he 
lives in the South. We present unrestricted least squares regressions of y, on 
Xl,. . . ,XT, and we examine the form of the I7 matrix. There are significant leads 
and lags, but there is evidence in favor of a static relationship conditional on a 
latent variable; the leads and lags could be interpreted as just due to c, with 
E(~;lxr,...,+, c) = Px, + c. The estimates of p that control for c are smaller in 
absolute value than the cross-section estimates. The union coefficient declines by 
40%, with somewhat larger declines for the SMSA and region coefficients. 

The second application presents estimates of a model of labor force participa- 
tion. It is based on a sample of married women in the Michigan Panel Study of 
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Income Dynamics. We focus on the relationship between participation and the 
presence of young children. The unrestricted I7 matrix for the probit specification 
has significant leads and lags; but, unlike the wage example, there is evidence here 
that the leads and lags are not generated just by a latent variable. If we do impose 
this restriction, then the resulting estimator of /3 indicates that the cross-section 
estimates overstate the negative effect of young children on the woman’s par- 
ticipation probability. 

The estimates for the logit functional form present some interesting contrasts to 
the probit results. The cross-section estimates, as usual, are in close agreement 
with the probit estimates. But when we use the conditional maximum likelihood 
estimator to control for c, the effect of an additional young child on participation 
becomes substantially more negative than in the cross-section estimates; so the 
estimated sign of the bias is opposite to that of the probit results. Here the 
estimation method is having a first order effect on the results. There are a variety 
of possible explanations. It may be that the unrestricted distribution for c in the 
logit form is the key. Or, since there is evidence against the restriction that: 

perhaps we are finding that imposing this restriction simply leads to different 
biases in the probit and logit estimates. 

2. Specification and identification: Linear models 

2. I. A production function example 

We shall begin with a production function example, due to Mundlak (1961).’ 
Suppose that a farmer is producing a product with a Cobb-Douglas technology: 

Y,, = Px,, + c, + u ,, (O<p<l;i=l,..., N;t=l,..., T), 

wherey,, is the logarithm of output on the ith farm in season t, x,~ is the logarithm 
of a variable input (labor), ci represents an input that is fixed over time (soil 
quality), and u,, represents a stochastic input (rainfall), which is not under the 
farmer’s control. We shall assume that the farmer knows the product price (P) 
and the input price (W), which do not depend on his decisions, and that he 
knows ci. The factor input decision, however, is made before knowing u,,, and we 
shall assume that xi, is chosen to maximize expected profits. Then the factor 
demand equation is: 

x,= {ln/3+ln[E(eU~I~,)]+ln(J’,/~,)+c}/(I-P), (2.1) 

‘This example is also discussed in Mundlak (1963) and in Zellner, Kmenta, and D&e (1966) 
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where& is the information set available to the farmer when he chooses x,, and we 
have suppressed the i subscript. 

Assume first that U, is independent offt,, so that the farmer cannot do better 
than using the unconditional mean. In that case we have: 

So if c is observed, only one period of data is needed; the least squares regression 
of y, on xi, c provides a consistent estimator of B as N + cc. 

Now suppose that c is not observed by the econometrician, although it is 
known to the farmer. Consider the least squares regression of y, on xi, using just 
a single cross-section of the data. The population counterpart is: 

E*(y,lx,) = T, + rxl, 

where E* is the minimum mean-square error linear predictor (the wide-sense 
regression function): 

7r = COV(Y,> x,)/J+,), no = Eb,)- mE(x,). 

We see from (2.1) that c and xi are correlated; hence n z p and the least squares 
estimator of p does not converge to p as N -+ co. Furthermore, with a single cross 
section, there may be no internal evidence of this omitted-variable bias. 

Now the panel can help to solve this problem. Mundlak’s solution was to 
include farm specific indicator variables: a least squares regression of y,, on 
x,[,d;, (i=l,..., N; t =l,..., T), where d,, is an N X 1 vector of zeros except for 
a one in the i th position. So this solution treats the c, as a set of parameters to be 
estimated. It is a “fixed effects” solution, which we shall contrast with “random 
effects”. The distinction is that under a fixed effects approach, we condition on 
the c,, so that their distribution plays no role. A random effects approach invokes 
a distribution for c. In a Bayesian framework, /3 and the c, would be treated 
symmetrically, with a prior distribution for both. Since I am only going to use 
asymptotic results on inference, however, a “gentle” prior distribution for /3 will 
be dominated. That this need not be true for the c, is one of the interesting 
aspects of our problem. 

We shall do asymptotic inference as N tends to infinity for fixed T. Since the 
number of parameters (c;) is increasing with sample size, there is a potential 
“incidental parameters” problem in the fixed effects approach. This does not, 
however, pose a deep problem in our example. The least squares regression with 
the indicator variables is algebraically equivalent to the least squares regression of 
y,, - 7, on x,, - X, (i = 1,. . . ,N; t = 1,. . . , T), where J, = cT,,y,,/T, X, = 
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cr=,x,,/T. If T= 2, this reduces to a least squares regression of y,, - y,, on 
X 12 - x,,. Since 

Eb,, - ~;llX,2 - X,1) = B(X,, - XA 

the least squares regression will provide a consistent estimator of j3 if there is 
sufficient variation in x,~ - x,1.2 

2.2. Fixed effects and incidental parameters 

The incidental parameters can create real difficulties. Suppose that u,~ is indepen- 
dently and identically distributed (i.i.d.) across farms and periods with V( ~4,~) = u2. 
Then under a normality assumption, the maximum likelihood estimator of a2 
converges (almost surely) to a2( T -- 1)/T as N + cc with T fixed.3 The failure to 
correct for degrees of freedom leads to a serious inconsistency when T is small. 
For another example, consider the following autoregression: 

Y,, = BY,0 + c, + U,l) 

Y,, = BY,1 + c, + u,2. 

Assume that u,~ and ui2 are i.i.d. conditional on y;, and c,, and that they follow a 
normal distribution (N(0, a2)). Consider the likelihood function corresponding to 
the distribution of ( y,i, y,*) conditional on y,, and c,. The log-likelihood function 
is quadratic in j3, cl,. . . , cN (given u2), and the maximum likelihood estimator of fl 
is obtained from the least squares regression of y,, - y,, on y;, - y;, (i = 1,. . . , N). 
Since u,t is correlated withy,,, and 

Y,2 - Y,, =P(r,, - Y,o)+ ui2 - UZlJ 

it is clear that 

E(Y,, - Y,,~Y,, - Y,O) +P(Y,, - Y,,), 

and the maximum likelihood estimator of p is not consistent. If the distribution of 
y,O conditional on c, does not depend on /I or ci, then the likelihood function 
based on the distribution of (Y,~, yjl, yr2) conditional on c, gives the same 
inconsistent maximum likelihood estimator of j3. If the distribution of (Y,~, y,t, yr2) 

*We shall not discuss methods for eliminating omitted-variable bias when Y does not vary over time 
(x,, = Y, ). See Chamberlain (1978) and Hausman and Taylor (1981). 

‘This example is discussed in Neyman and Scott (1948). 
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is stationary, then the estimator obtained from the least squares regression of 

Y;, - Y,l O”Y,l - y,. converges, as N -+ co, to (/3 - 1)/2.4 

2.3. Random effects and specification analysis 

We have seen that the success of the fixed effects estimator in the production 
function example must be viewed with some caution. The incidental parameter 
problem will be even more serious when we consider nonlinear models. So we 
shall consider next a random effects treatment of the production function 
example; this will also provide a convenient framework for specification analysis.5 

Assume that there is some joint distribution for (xii, . . . , xlT, c,), which does not 
depend upon i, and consider the regression function that does not condition on c: 

E(Y,&~.., X;T> =Px,r +E(c,lx,w..,x;~>. 

The regression function for ci given X, = (x,~, . . . ,x,~) will generally be some 
nonlinear function. But we can specify a minimum mean-square error linear 
predictor:6 

E*(qIx;l,..., XJ = I) + A,x;, + . . . + hyx,‘. = I) + X’x I’ (2.2) 

where h = V-l(~,)cov(x,, c,). No restrictions are being imposed here-(2.2) is 
simply giving our notation for the linear predictor. 

Now we have: 

E*(~,,lx,) = $ + Px,, + X’x,. 

Combining these linear predictors for the T periods gives the following multi- 
variate linear predictor:’ 

E*( v,lx,) = q, + =;, 

17=cov(y,,x;)v-‘(x;)=/3z+rh’, 
(2.3) 

wherey;=(y;,,..., Y,~), Z is the T x T identity matrix, and 1 is a T X 1 vector of 
ones. 

4See Chamberlain (1980) and Nickel1 (1981). 
‘In our notation, Kiefer and Wolfowitz (1956) invoke a distribution for c to pass from the 

distribution of (_v, x) conditional on c to the marginal distribution of ( .Y. x). Note that they did not 
assume a parametric form for the distribution of c. 

‘Mundlak (1978) uses a similar specification, but with h, = = A,. The appropriateness of these 
equality constraints is discussed in Chamberlain (1980, 1982a). 

‘We shall not discuss the problems caused by attrition. See Griliches, Hall and Hausman (1978) and 
Hausman and Wise (1979). 
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The IT matrix is a useful tool for analyzing this model. Consider first the 
estimation of j3; if T = 2 we have: 

Hence, 

So given a consistent estimator for Kf, we can obtain a consistent estimator for /?. 
The estimation of II is almost a standard problem in multivariate regression; but, 
due to the nonlinearity in E(c,jx;), we are estimating only a wide-sense regression 
function, and some care is needed. It turns out that there is a way of looking at 
the problem which allows a straightforward treatment, under very weak assump- 
tions. We shall develop this in the section on inference. 

We see in (2.3) that there are restrictions on the II matrix. The off-diagonal 
elements within the same column of n are all equal. The T* elements of II are 
functions of the T + 1 parameters /3, A,, . . . , A,. This suggests an obvious specifica- 
tion test. Or, backing up a bit, we could begin with the specification that II = PI. 
Then passing to (2.3) would be a test for whether there is a time-invariant omitted 
variable that is correlated with the x’s The test of II= PI + IX’ against an 
unrestricted n would be an omnibus test of a variety of misspecifications, some of 
which will be considered next.* 

Suppose that there is serial correlation in U, with U, = PU,_~ + w,, where w, is 
independent of /, and we have suppressed the i subscripts. Now we have: 

E(eYA) = ep”f~lE(ew~). 

So the factor demand equation becomes: 

x,= {ln~+ln[E(e”~)]+ln(P,/W,)+pu,~,+c}/(1-P). 

Suppose that there is no variation in prices across the farms, so that the P,/W, 
term is captured in period specific intercepts, which we shall suppress. We can 
solve for u, in terms of x,,~ and c, and substitute this solution into the yI 
equation. Then we have: 

“This specification test was proposed in Chamberlain (1978a,1979). The restrictions are similar lo 
those in the MIMIC model of Jiireskog and Goldberger (1975); also see Goldberger (1974a), Griliches 
(1974). Jnreskog and %rbom (1977). Chamberlain (1977). and Jiireskog (1978). There are also 
connections with the work on sibling data, which is surveyed in Griliches (1979). 
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where cp = ~~'(1 - p). So the II matrix would indicate a distributed lead, even 
after controlling for c. If instead there is a first order moving average, U, = wr + 
pw,_ 1, then: 

E(eUflJT) = ePWl-IE(eWf), 

and a bit of algebra gives: 

E(~,lx,,...,x,) =X,-P l&x, + *. . + +T)+ ‘Pxt+1. 

Once again there is a distributed lead, but now /3 is not identified from the I7 
matrix. 

2.4. A consumer demand example 

2.4. I. Certainty 

We shall follow Ghez and Becker (1973, Heckman and MaCurdy (1980) 
MaCurdy (1981) in presenting a life-cycle model under certainty. Suppose 
the consumer is maximizing 

and 
that 

v= i p(‘-“U,(C,) 
t=1 

subject to 

i y-(‘-‘)P,C, I B, C, 2 0 (t=l ,...J), 
r=l 

where p-l - 1 is the rate of time preference, y - 1 is the (nominal) interest rate, C, 
is consumption in period t, P, is the price of the consumption good in period t, 
and B is the present value in the initial period of lifetime income. In this certainty 
model, the consumer faces a single lifetime budget constraint. 

If the optimal consumption is positive in every period, then 

v,‘W = (VP) +“(P,/P,)U,‘(c,). 

A convenient functional form is U,(C) = A,@/8 (A, > 0, 6 < 1); then we have: 

y,=fix,+cp(t-1)+c+u,, (2.4) 
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where y, = lnC,, x, = In P,, c = (6 - l))‘ln[U,l(C,)/P,], U, = (l- 6)-‘ln A,, /I = 
(6 -1)-l, and cp = (l- 6))‘ln(yp). Note that c is determined by the marginal 
utility of initial wealth: U,l(C,)/P, = aV,,aB. 

We shall assume that A, is not observed by the econometrician, and that it is 
independent of the P ‘s. Then the model is similar to the production function 
example if there is price variation across consumers as well as over time. There 
will generally be correlation between c and (xi,. . . , xT). As before we have the 
prediction that II = pZ + IA’, which is testable. A consistent estimator of p can be 
obtained with only two periods of data since 

We shall see next how these results are affected when we allow for some 
uncertainty. 

2.4.2. Uncertainty 

We shall present a highly simplified model in order to obtain some explicit results 
in the uncertainty case. The consumer is maximizing 

subject to 

P,C, + S, I B, 

PJ* + S, < YSr-1, c, 2 0, s,20 (t=1,..., 7). 

The only source of uncertainty is the future prices. The consumer is allowed to 
borrow against his future income, which has a present value of B in the initial 
period. The consumption plan must have C, a function only of information 
available at date t. 

It is convenient to set r = co and to assume that P,+ l/P, is i.i.d. (t = 1,2,. . .). If 
U,(C) = A,@/& then we have the following optimal plan: 9 

C,=d,B/P,,S,=(l-d,)B, 

c,=d,~S,-,/P,J,=(l-d,)yS,-, (t =2,3,...), 
(2.5) 

9We require pug < 1, where A, I Mg’ for some constant M. Phelps (1962) obtained explicit 
solutions for models of this type. The derivation of (2.5) can be obtained by following Levhari and 
Srinivasan (1969) or Dynkin and Yushkevich (1979, Ch. 6.9). 
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where 

d,= [l+h+l+tf,+lf,+d+ --I-‘, 
f, = (pKA,/A,_l)[lA1-s)l, K = ~~E[tp,-,,‘p,)~]. 

It follows that: 

where y, x, u are defined as in (2.4) and 5 = (1- 6))‘ln(~~)+lny. 
We see that, in this particular example, the appropriate interpretation of the 

change regression is very sensitive to the amount of information available to the 
consumer. In the uncertainty case, a regression of (lnC, - lnC,_,) on (In P, - 
In P,_ 1) does not provide a consistent estimator of (6 - 1))‘; in fact, the estima- 
tor converges to - 1, with the implied estimator of 6 converging to 0. 

2.4.3. Labor supply 

We shall consider a certainty model in which the consumer is maximizing 

V= i PC’-“U,(C,, L,) (2.6) 
r=1 

subject to 

;: y-“-“(P,C,+W,L,)IB+ ;: y-(‘-‘)W,~, 

t=1 1=1 

C,lO, OlL,lL (t=l ,...J), 

where L, is leisure, w is the wage rate, B is the present value in the initial period 
of nonlabor income, and z is the time endowment. We shall assume that the 
inequality constraints on L are not binding; the participation decision will be 
discussed in the section on nonlinear models. If U, is additively separable: 

and if fit< L) = A,L8//6, then we have: 

y,=px,+c&-1)+c+u,, (2.7) 

wherey, = In L,, x, = In W,, c = (6 - 1))‘ln[fir’(L,)/W,], U, = (l- 6))‘ln A,, p = 
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(6 - 1)-l, and ‘p = (1 - G))‘ln(yp). Once again c is determined by the marginal 
utility of initial wealth: &‘( L,)/ WI = &‘,,iYB. 

We shall assume that A, is not observed by the econometrician. There will 
generally be a correlation between c and (xi,...,xr), since L, depends upon 
wages in all periods. If A, is independent of the W’s, then we have the prediction 
that I7 = p1+ IA’. If, however, wages are partly determined by the quantity of 
previous work experience, then there will be lags and leads in addition to those 
generated by c, and I7 will not have this simple structure.‘0 

It would be useful at this point to extend the uncertainty model to incorporate 
uncertainty about future wages. Unfortunately, a comparably simple explicit 
solution is not available. But we may conjecture that the correct interpretation of 
a regression of (In L, - In L,_ 1) on (In y - In W,_ 1) is also sensitive to the amount 
of information available to the consumer. 

2.5. Strict exogeneity conditional on a latent variable 

We shall relate the specification analysis of II to the causality definitions of 
Granger (1969) and Sims (1972). Consider a sample in which t = 1 is the first 
period of the individual’s (economic) life. l1 A Sims definition of “x is strictly 
exogenous” is: 

E*(y,lx,,x,,...) =E*(Y,~x~,...,x~) (t =1,2,...). 

In this case II is lower triangular: the elements above the main diagonal are all 
zero. This fails to hold in the models we have been considering, due to the 
omitted variable c. But, in some cases, we do have the following property: 

E*(Y,Ix~,x~,...,c)=E*(Y~Ix~,...,x~,c) (t =1,2,...). (2.8) 

It was stressed by Granger (1969) that the assessment of noncausality depends 
crucially on what other variables are being conditioned on. The novel feature of 
(2.8) is that we are asking whether there exists some latent variable (c) such that x 
is strictly exogenous conditional on c. The question is not vacuous since c is 
restricted to be time invariant. 

loSee Blinder and Weiss (1976) and Heckman (1976) for life-cycle labor supply models with human 
capital accumulation. 

“We shall not discuss the problems that arise from truncating the lag distribution. See Griliches 
and Pakes (1980). 
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Let US examine what restrictions are implied by (2.8). Define the following 
linear predictors:” 

Y, =/-Lx, + . - . + &x, + Y,C + u, 9 

E*(u,Ixi ,..., xr,c) =0 (t =l,...,T). 

Then (2.8) is equivalent to & = 0 for s > t. If yi Z 0, we can choose a scale 
normalization for c such that yi = 1. Then we can rewrite the system with & = 0 
(S > t) as follows: 

Y, = &Xi + rB,,x, + . . . + &IX, + Y,Yl + fi,, 

s,, = P,, - Y,Pll, 4 = u, - Y,%> (2.9) 

E(x,f,)=O (s=l,..., T;t=2 ,..., T). 

Consider the “instrumental variable” orthogonality conditions implied by 
E(x,ti,) = 0. In the yr equation, we have T + 1 unknown coefficients: 

Pr1, P r2, . . . , &, yT, and T orthogonality conditions. So these coefficients are not 
identified. In the y,_, equation, however, we have just enough orthogonahty 
conditions; and in the Y,_~ equation (j I T - 2), we have i - 1 more than we 
need since there are T - j + 1 unknown coefficients: Br-j,l, PT-I,*,. . . , 
&_,, T_j, ~r_~, and T orthogonality conditions: E(x,&_~) = 0 (S = 1,. . . , T). It 
follows that, subject to a rank condition, we can identify &, y,, and & for 
2 I s I t I T - 1. In addition, the hypothesis in (2.8) implies that if T 2 4, there 
are (T - 3)( T - 2)/2 over identifying restrictions. 

Consider next a Granger definition of “y does not cause x conditional on c”: 

E*(x,+~lx~,...,x,,y~,...,y,,c)=E*(x,+~lx~,...,x,,c) (t =l,...,T-1). 

(2.10) 

Define the following linear predictors: 

X ,+1= #,1X1 + . . . +~,,X,+%lYl+ **- +%fY, +s,+s+ “,+17 

E*b,+ll~l,...,~,, Y, ,..., y,,c)=O (t=l,..., T-l). 

Then (2.10) is equivalent to ‘pt, = 0. We can rewrite the system, imposing q,, = 0, 
as follows: 

$,iXi + . . . + 4, ,-1X,-l + TX,+ fi,+1, 

5::L -G+l/s;N,:l sY 

- (L+l/Li 

5 = JI,, + G+A), 

4+1= u,+1 Et x,4+1) = E(Y$,+,) = 0 
(2.11) 

(~51-1; t=2,...,T-1). 

12We are suppressing the period specific intercepts. 
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In the equation for x,,~, there are t unknown parameters, $ti,. . . ,$,, I- 1, T,, and 
2( t - 1) orthogonality conditions. Hence, there are t - 2 restrictions (3 I t I T - 1). 

It follows that the Granger condition for “y does not cause x conditional on c” 
implies (T - 3)(T - 2)/2 restrictions, which is the same number of restrictions 
implied by the Sims condition. In fact, it is a consequence of Sims’ (1972) 
theorem, as extended by Hosoya (1977), that the two sets of restrictions are 
equivalent; this is not immediately obvious from a direct comparison of (2.9) and 
(2.11). 

In terms of the n matrix, conditional strict exogeneity implies that: 

n = B + yX’, 

p11 0 0.. 0 
P P22 0 . . . 0 

B= ” 

1 s;, PT2 ... P TT 

These nonlinear restrictions can be imposed and tested using the minimum 
distance estimator to be developed in the inference section. Alternatively, we can 
use the transformations in (2.9) or in (2.11). These transformations give us 
“simultaneous equations” systems with linear restrictions; (2.9) can be estimated 
using three-stage least squares. A generalization of three-stage least squares, 
which does not require homoskedasticity assumptions, is developed in the in- 
ference section. It is asymptotically equivalent to imposing the nonlinear restric- 
tions directly on J7, using the minimum distance estimator. 

2.6. Lugged dependent variables 

For a specific example, write the labor supply model in (2.7) as follows: 

Y, =61x, + 6,x,_, + Q-1 + UC, 

E*(v,(x,,...,x,)=O (t=l,...,T); 
(2.12) 

this reduces to (2.7) if 6, = - 6, and 6, = 1. If we assume that vt = w + e,, where w 
is uncorrelated with the x’s and e, is i.i.d. and uncorrelated with the x’s and w, 
then we have the autoregressive, variance-components model of Balestra and 
Nerlove (1966).13 In keeping with our general approach, we shall avoid placing 

“Estimation in variance-components models is discussed in Nerlove (1967,1971,1971a), Wallace 
and Hussain (1969). Amemiya (1971). Madalla (1971), Madalla and Mount (1973), Harville (1977), 
Mundlak (1978), Mazodier and Trognon (1978), Trognon (1978). Lee (1979). and Taylor (1980). 
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Y, = &Xl + . * * + b,B,,x, + Ytlcl+ Yt2C2 + u, 3 

E*(u,Jx,,...,x,)=O (1 =l,...,T), 

where 

Cl =6,x, + 6,y, + &&,, cz = Yo, 

and there are nonlinear restrictions on the parameters. The I7 matrix has the 
following form: 

II= B + yth; + y2x2, (2.13) 

where B is lower triangular, y,! = ( ylj, . . . , yrj), and E*( cjlx) = X,x ( j = 1,2). 
This specification suggests a natural extension of the conditional strict exogene- 

ity idea, with the conditioning set indexed by the number of latent variables. We 
shall say that “x is strictly exogenous conditional on ct, c2” if: 

E*(y,l..., x,_~,x,,x,+~ ,... ~c~,c~)=E*(Y,Ix,,x,-~~...,c~‘c~). 

We can also introduce a Granger version of this condition and generalize the 
analysis in Section 2.5. 

Finally, consider an autoregressive model with a time-invariant omitted vari- 
able that is correlated with x: 

where E*(u,~x~,..., xr) = 0. Recursive substitution gives: 

Y, =&xl + . . . + &x, + Y,lcl+ Y,2C2 + u, 9 

E*(~,Ix~,...,xr) = 0 (t =l,...,T), 

where ct = yo, c2 = c, and there are nonlinear restrictions on the parameters. So y 
is strictly exogenous conditional on cr, c2, and setting E*( c/lx) = 4, + X,x (j = 1,2) 
gives a I7 matrix in the (2.13) form. 

We can impose the restrictions on I7 directly, using a minimum distance 
estimator. There is, however, a transformation of the model that allows a 
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computationally simpler instrumental variable estimator: 

y, - y,-,= qx, -XI-l)+ uL1- J&2)+ ur - “f-1, 

E*( u, - u,_Jx) = 0 (t=3,...,T); 

y2=(P21xi+ ..* +‘p2TxT+w27 

y1=‘p11x1+ **. +(P+++y, 

E*(w+)=O (j=1,2), 

where E*( $1~) = cpi’x is unrestricted since E*(c,lx) is unrestricted ( j = 1,2). Now 
we can apply the generalized three-stage least squares estimator. This is computa- 
tionally simple since the parameter restrictions are linear. The estimator is 
asymptotically equivalent to applying the minimum distance procedure directly to 
IT. Since the linear predictor equations for y, and y2 are unrestricted, the limiting 
distribution of 6, and 6, is not affected if we drop these equations when we form 
the generalized three-stage least squares estimator. (See the Appendix.) 

2.7. Serial correlation or partial adjustment? 

Griliches (1967) considered the problem of distinguishing between the following 
two models: a partial adjustment model,15 

Y, = Px, + v-1 + ur, (2.14) 

and a model with no structural lagged dependent variable but with a residual 
following a first-order Markov process: 

Y, = Px, + ZJ f, 

u, = PU~-~ + e,, e, i.i.d.; 

in both cases x is strictly exogenous: 

E*b,Ixp..., xr)=E*(~,lxi,...,xr)=O (t=l,...,z-). 

In the serial correlation case, we have: 

y, = Px, - PSX,- 1+ PYt- 1+ e,; 

(2.15) 

“See Nerlove (1972) for distributed lag models based on optimizing behavior in the presence of 
uncertainty and costs of adjustment. 
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as Griliches observed, the least squares regression will have a distinctive pattern 
-the coefficient on lagged x equals (as N + 00) minus the product of the 
coefficients on current x and lagged y. 

I want to point out that this prediction does not rest on the serial correlation 
structure of U. It is a direct implication of the assumption that u is uncorrelated 
with xi,...,xr: 

Here r++ur_i is simply notation for the linear predictor. In general U[ is not a 
first-order process (E*(u,lu,_,, u,_~) # E*(u,lu,_,)), but this does not affect our 
argument. 

Within the 17 matrix framework, the distinction between the two models is that 
(2.15) implies a diagonal I7 matrix, with no distributed lag, whereas the partial 
adjustment specification in (2.14) implies that I7 = B + yh’, with a distributed lag 
in the lower triangular B matrix and a rank one set of lags and leads in yh’. 

We can generalize the serial correlation model to allow for an individual 
specific effect that may be correlated with x: 

Y,=Pxl+c+Ur, E*(~,lxi ,..., xr) = 0. 

Now both the serial correlation and the partial adjustment models have a rank 
one set of lags and leads in II, but we can distinguish between them because only 
the partial adjustment model has a distributed lag in the B matrix. So the absence 
of structural lagged dependent variables is signalled by the following special case 
of conditional strict exogeneity: 

E*b,l~w.,+, c) = E*b+,, c). 

In this case the relationship of x toy is “static” conditional on c. We shall pursue 
this distinction in nonlinear models in Section 3.3. 

2.8. Residual covariances: Heteroskedasticity and serial correlation 

2.8.1. Heteroskedasticity 

If E(cjlxi) z E*(ci(xi), then there will be heteroskedasticity, since the residual will 
contain E(cilxj)-E*(c,lx,). Another source of heteroskedasticity is random 
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coefficients: 
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Y,t = blxit + ‘1 + ‘lfr 

I!+ = p + w, ) E( w;) = 0, 

Y,t = PXir + ci + ( W~Xir + uit)’ 

If w is independent of x, then II= /?I + IX’, and our previous discussion is 
relevant for the estimation of p. We shall handle the heteroskedasticity problem 
in the inference section by allowing E[( yi - 27x;)( y, - IIx,)‘].q] to be an arbi- 
trary function of xi.16 

2.8.2. Serial correlation 

It may be of interest to impose restrictions on the residual covariances, such as a 
variance-components structure together with an autoregressive-moving average 
scheme.17 Consider the homoskedastic case in which 

0 = E[( Y; - nx;)( s: - nx,)‘lx;] 

does not depend upon x,. Then the restrictions can be expressed as tijk = g,k(0), 
where the g’s are known functions and 8 is an unrestricted parameter vector. We 
shall discuss a minimum distance procedure for imposing such restrictions in 
Section 4. 

2.9. Measurement error 

Suppose that 

Y,,=Px:+u. I, 9 

xi, = x,; u,t )...) t =l,..., T), 

where x,‘; is not observed. We assume that the measurement error u,( satisfies 
E*( uj,]xi) = 0. If E*(u&,) = 0, then E*( y,]x,) = 17xI, with 

(2.16) 

“Anderson (1969,1970), Swamy (1970,1974), Hsiao (1973, and Mundlak (1978a) discuss estima- 
tors that incorporate the particular form of heteroskedasticity that is generated by random coefficients. 

“Such models for the covariance structure of earnings have been considered by Hause (1977,1980), 
Lillard and Willis (1978). Lillard and Weiss (1979), MaCurdy (1982), and others. 
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Since V( x,) and V( x,?) will generally not be diagonal matrices, (2.16) provides an 
alternative interpretation of lags and leads in the I7 matrix. The II matrix in 
(2.16) generally does not have the form rll+ r,lX’; nevertheless, it may be 
difficult to distinguish between measurement error and a time-invariant omitted 
variable if T is small. For example, if the covariance matrices of xi and x: have 
the form ‘pll + cp,ll’ (equicorrelated), then II has this form also and no distinction 
is possible. Although cov(+, xiS) generally declines as It -- ~1 increases, the 
equicorrelated approximation may be quite good for small T. 

It has been noted in other contexts that the bias from measurement error can 
be aggravated by analysis of covariance techniques.‘* Consider the following 
example with T = 2: 

Yi2~~rl~P~xi2~xil~+u~2~u~1~P~u~2~uil~~ 

so that E*( y,, - yillxi2 - xii) = &xi2 - xii) with 

p=p l- 
i 

V( u,2 - uil) 

i v(xr2 - xii) ’ 

If V(u,,) = V( u,~) and V(x,i) = V(xi2), then we can rewrite this as: 

#6=/s l- 

/ 

v(“il)(l- ‘:u2) 

i %,)(1- rig ’ 
where ruIu2 denotes the correlation between uil and IJ,~. If x,~ and xi2 are highly 
correlated but u,i and ui2 are not, then a modest bias from measurement error in a 
cross-section regression can become large when we relate the change in y to the 
change in x. On the other hand, if u,i = u12, then the change regression eliminates 
the bias from measurement error. Data from reinterview surveys should be useful 
in distinguishing between these two cases. 

3. Specification and identification: Nonlinear models 

3.1. A random efects probit model 

Our treatment of individual effects carries over with some important qualifica- 
tions to nonlinear models. We shall illustrate with a labor force participation 
example. If the upper bound on leisure is binding in (2.6) then 

p”-“~~~(~) > my-P’)Ij/, 

‘*See Griliches (1979) for example. 
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where m is the Lagrange multiplier corresponding to the lifetime budget con- 
straint (the marginal utility of initial wealth) and o,(L) = A, La//s. Let yjr = 1 if 
individual i works in period t, y,, = 0 otherwise. Let: 

In &:, = ~~~~~ + eli,, 

In A,, = (PZXi, + e2irj 

where xi, contains measured variables that predict wages and tastes for leisure. 
We shall simplify the notation by supposing that xir consists of a single variable. 
Then, y,, = 1 if: 

which we shall write as: 

~X;,+~(t-1)+ci+ui,20* (3.1) 

Now we need a distributional assumption for the u’s. We shall assume that 

(U r, . _ . , uT) is independent of c and the x’s, with a multivariate normal distribu- 
tion (N(O,Z)). So we have a probit model (suppressing the i subscripts and 
period-specific intercepts): 

where F( .) is the standard normal distribution function and a,, is the t th diagonal 
element of 2. 

Next we shall specify a distribution for c conditional on x = (xi,. . .,x,): 

c=l//+h,x1+ .-* +A,x,+u, 

where u is independent of the x’s and has a normal distribution (N(0, a,;)). There 
is a very important difference in this step compared with the linear case. In the 
linear case it was not restrictive to decompose c into its linear projection on x and 
an orthogonal residual. Now, however, we are assuming that the regression 
function E(cln) is actually linear, that u is independent of x, and that u has a 
normal distribution. These are restrictive assumptions and there may be a payoff 
to relaxing them. 

Given these assumptions, the distribution for y, conditional on xi,. . . ,xT but 
marginal on c also has a probit form: 

P(Y, =11x1,..., xr) = F [ a,( px, + X,x, + . . . + bXT)l~ 
at = ( Otr + fJy2. 
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Combining these T specifications gives the following matrix of coefficients:‘9 

II=diag{a,,...,ar}[/?lr+(h’]. (3.2) 

This differs from the linear case only in the diagonal matrix of normalization 
factors (r,. There are now nonlinear restrictions on 17, but the identification 
analysis is still straightforward. We have: 

lx,/3 = :‘7fll a, 
a1 

- flrl = T(‘lt - -n,,, 
a1 

5 = h, + flt1) 
a1 h + %) 

(t =2,...,T), 

if p + h, + X, # 0. Then, as in the linear case, we can solve for c~~fi and ar,h. Only 
ratios of coefficients are identified, and so we can use a scale normalization such 
as (Y~ =l. 

As for inference, a computationally simple approach is to estimate T cross-sec- 
tional probit specifications by maximum likelihood, where x1,. . . ,xT are included 
in each of the T specifications. This gives li, (t = 1,. . . , T) and we can use a Taylor 
expansion to derive the covariance matrix of the asymptotic normal distribution 
for (7jl,..., 7jT). Then restrictions can be imposed on II using a minimum distance 
estimator, just as in the linear case. 

We shall conclude our discussion of this model by considering the interpreta- 
tion of the coefficients. We began with the probit specification that 

P(y,=llx,,...,x,, c)=F[a,;“*(fix,+c)]. 

So one might argue that the correct measure of the effect of x, is based on a,; ‘/*/!I, 
whereas we have obtained (a,, + a, ) * -‘/*PI which is then an underestimate. But 
there is something curious about this argument, since the “omitted variable” u is 
independent of x1,. . . ,xT. Suppose that we decompose u, in (3.1) into Us, + u2, 
and that measurements on ulr become available. Then this argument implies that 
the correct measure of the effect of x, is based on [V(/(U~,)]-‘/~~. As the data 
collection becomes increasingly successful, there is less and less variance left in 
the residual uZtr and IV( u*,)] -I/* becomes arbitrarily large. 

The resolution of this puzzle is that the effect of x, depends upon the value of c, 
and the effect evaluated at the average value for c is not equal to the average of 
the effects, averaging over the distribution for c. Consider the effect on the 
probability that y, = 1 of increasing x, from x’ to x”; using the average value for c 

“This approach to analysis of covariance in probit models was proposed in Chamberlain (1980) 
For other applications of multivariate probit models to panel data, see Heckman (1978,1981). 
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gives : 

The problem with this measure is that it may be relevant for only a small fraction 
of the population. I think that a more appropriate measure is the mean effect for 
a randomly drawn individual: 

j[P(y,=llx,=x”, c)-P(~,=llx,=x’,+(dc), 

where p(dc) gives the population probability measure for c. 
We shall see how to recover this measure within our framework. Let z = 

h,x, + . . . + hrxT; let p(dz) and p(du) give the population probability measures 
for the independent random variables z and u. Then: 

~(Y,=lIxt.c)=~(Y,=llx,,...,x,,c) 

= p(.Y, =11x,, z, 4; 

jJ’(~,=llx,, z, +(dz)p(du) 

= jP(y, =11x,, z, +(dulx,, z)p(dz) 

= /P(Y~ =11x,, Mdz), 

where p(duIx,, z) is the conditional probability measure, which equals the uncon- 
ditional measure since u is independent of x, and z. [It is important to note that 
the last integral does not, in general, equal P(y, =11x,). For if x, and z are 
correlated, as they are in our case, then 

P(Y,=W,) = /P(Y, =11x,, ~h4W,) 
f jP(y, =11x,> z)ddz).l 

We have shown that: 

j-[P(y,=l(x,=x”,c)-P(y,=llx,=x’,c)]p(dc) 

= 
/[ ( P y,=lIxt=x”,z)-P(y,=llx,=x’,z)]p(dz). (3.3) 

The integration with respect to the marginal distribution for z can be done using 
the empirical distribution function, which gives the following consistent (as 
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N + co) estimator of (3.3): 
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+ ; { F[a,(px”+ x1x,1 + . . . + XTXjT)] 
1=1 

- F[a,(j3x~+Xlx;l+ . . * +hTXiT)]}. (3.4) 

3.2. A fixed effects logit model: Conditional likelihood 

A weakness in the probit model was the specification of a distribution for c 
conditional on x. A convenient form was chosen, but it was only an approxima- 
tion, perhaps a poor one. We shall discuss a technique that does not require us to 
specify a particular distribution for c conditional on x; it will, however, have its 
own weaknesses. 

Consider the following specification: 

P(y,=IJx,,...,x,,c)=G(Bx,+c), G(z)=e2/(l+eZ), (3.5) 

where y,, . _. ,yr are independent conditional on xi,. . . ,xT, c. Suppose that T= 2 
and compute the probability that y, = 1 conditional on yi + y2 = 1: 

(3.6) 

which does not depend upon c. Given a random sample of individuals, the 
conditional log-likelihood function is: 

L= C {W~lnG[P(xi2-xi~)]+(1-~)lnG[-~(xi~-x,~)]}~ 
iEB 

where 

i 

1, if (yjl, yi2) = (O,l), 
w’= 09 if(.Yi~~~i2)=(1~0)~ 
B= {ilyil+yj2=1}. 

This conditional likelihood function does not depend upon the incidental 
parameters. It is in the form of a binary logit likelihood function in which the two 
outcomes are (0,l) and (1,0) with explanatory variables x2 -xi. This is the 
analog of differencing in the two period linear model. The conditional maximum 
likelihood (ML) estimate of /3 can be obtained simply from a ML binary logit 
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program. This conditional likelihood approach was used by Rasch (1960,196l) in 
his model for intelligence tests.20 

The conditional ML estimator of j3 is consistent provided that the conditional 
likelihood function satisfies regularity conditions, which impose mild restrictions 
on the ci. These restrictions, which are satisfied if the ci are a random sample from 
some distribution, are discussed in Andersen (1970). Furthermore, the inverse of 
the information matrix based on the conditional likelihood function provides a 
covariance matrix for the asymptotic (N + cc) normal distribution of the condi- 
tional ML estimator of 8. 

These results should be contrasted with the inconsistency of the standard fixed 
effects ML estimator, in which the likelihood function is based on the distribution 

ofy,,..., y, conditional on x1,. . . , xT, c. For example, suppose that T = 2, x,t = 0, 
xi2 =l (i=l,..., N). The following limits exist with probability one if the c, are a 
random sample from some distribution: 

Npm i ,fi E[ Yil(l- Yi2)lCiI = ~17 
l-1 

N@m $ i E[(l- Yir)Y,ZI’iI =‘?2, 
1-l 

where 

Andersen (1973, p. 66) shows that the ML estimator of j3 converges with 
probability one to 2/3 as N ---, cc. A simple extension of his argument shows that if 
G is replaced by any distribution function (G) corresponding to a symmetric, 
continuous, nonzero probability density, then the ML estimator of p converges 

“In Rasch’s model, the probability that person i gives a correct answer to item number t is 
exp(/3, + c,)/[l + exp(& + c,)]; this is a special case in which x,, is a set of dummy indicator variables. 
An algorithm for maximum likelihood estimation in this case is described in Andersen (1972). The use 
of conditional likelihood in incidental parameter problems is discussed in Andersen (1970,1973), 
Kalbfleisch and Sprott (1970), and Barndortf-Nielson (1978). The conditional likelihood approach in 
the logit case is closely related to Fisher’s (1935) exact test for independence in a 2X2 table. This 
exact significance test has been extended by Cox (1970) and others to the case of several contingency 
tables. Additional references are in Cox (1970) and Bishop et al. (1975). Chamberlain (1979) develops 
a conditional likelihcod estimator for a point process model based on duration data, and Griliches, 
Hall and Hausman (1981) apply conditional likelihood techniques to panel data on counts. 
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with probability one to: 
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2&l ‘p2 

i 1 ‘p1+(P2 . 

The logit case is special in that q2/(p1 = eB for any distribution for c. In general 
the limit depends on this distribution; but if all of the c, = 0, then once again we 
obtain convergence to 2p as N + co. 

For general T, conditioning on C,y,, (i = 1,. . . , N) gives the following condi- 
tional log-likelihood function: 

d,)ld,=O or 1 and ; d, = ; Y,, . 

t=1 t=1 I 

L is in the conditional logit form considered by McFadden (1974), with the 
alternative set (B,) varying across the observations. Hence, it can be maximized 
by standard programs. There are T + 1 distinct alternative sets corresponding to 
c, Y,~ = O,l, . _ . , T. Groups for which cry,, = 0 or T contribute zero to L, however, 
and so only T -1 alternative sets are relevant. The alternative set for the group 

with c,y,, = s has (3) 1 e ements, corresponding to the distinct sequences of T 

trials with s successes. For example, with T = 3 and s = 1 there are three 
alternatives with the following conditional probabilities: 

P 1,O,Ol~;~Cj,CY,t=~ =exP[b(X;l-Xij)]/D, 
( t 1 

P O~~~Ol~,~C,~CY,t=1 
( 

=exP[P(Xi2-Xlj)]/D, 
t 1 

o,o,l/x,,ci,~y;,=l =1/D, 

D=exp[P(x,lfx,g)l+exp[8(x,2-xjz)l+I. 

A weakness in this approach is that it relies on the assumption that they, are 
independent conditional on x, c, with an identical form for the conditional 
probability each period: P( yt = 1 lx, c) = G( px, + c). In the probit framework, 
these assumptions translate into X = a21, so that u + U, generates an equicorre- 
lated matrix: u,‘U’ + 02Z. We have seen that it is straightforward to allow X to be 
unrestricted in the probit framework; that is not true here. 
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An additional weakness is that we are limited in the sorts of probability 
statements that can be made. We obtain a clean estimate of the effect of x, on the 
log odds: 

ln P(y,=l(x,=x”,c) 

[ 

P(y,=Il x, = x’, c 
) 

P( y, =01x, = x/I, c) / P( y, = 0(x, = XI, c) 1 +(x”- x’); 

the special feature of the logistic functional form is that this function of the 
probabilities does not depend upon c; so the problem of integrating over the 
marginal distribution of c (instead of the conditional distribution of c given x) 
does not arise. But this is not the only function of the probabilities that one might 
want to know. In the probit section we considered 

P(y,=l(x,=x”, c)-P(y,=llx,=x’,c), 

which depends upon c for probit or logit, and we averaged over the marginal 
distribution for c: 

/[ ( P Y,=l(x,=x”,c)-P(y,=llx,=x’,c)]p(dc). (3.7) 

This requires us to specify a marginal distribution for c, which is what the 
conditioning argument trys to avoid. We cannot estimate (3.7) if all we have is the 
conditional ML estimate of p. 

Our specification in (3.5) asserts that y, is independent of x1,. . . , x, _ 1, x, + 1,. . . , xT 
conditional on x,, c. This can be relaxed somewhat, but the conditional likelihood 
argument certainly requires more than 

to see this, try to derive (3.6) with x2 = y,. We can, however, implement the 
following specification (with x’= (x,, . . . ,xT)): 

P(~~==Ilx,~)=G(p,o+PIlxl+ --. +P,tx,+c), (34 

where yr,. . .,y, are independent conditional on x, c. This corresponds to our 
specification of “x is strictly exogenous conditional on c” in Section 2.5, except 
that yt = 1 in the term y,c-it is not straightforward to allow a time-varying 
coefficient on c in the conditional likelihood approach. The extension of (3.6) is: 

P(Y, =lIx,c, Al+ Y, =I> = G(&, +&IX, +Pt+z + .. . +Ptrxt> 

(t=2,... J), (3.9) 
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where jj,, = p,, - plj (j = 0,l). So if x has sufficient variation, we can obtain 
consistent estimates of &, &, and /I,, (s = 2,. . . , t). Only these parameters are 
identified, since we can transform the model replacing c by E = pro + &lxl+ c 

without violating any restrictions. 
The restrictions in (3.5) or in (3.8) can be tested against the following alterna- 

tive: 

P(y,=l)x,c)=G(~~,+~,rx,+ ... +~xr+c). (3.10) 

We can identify only 7r,j - rtj and so we can normalize r,, = 0 (j = 0,. . . , T; 
t = 2,..., T). The maximized values of the conditional log-likelihoods can be used 
to form x2 statistics. 21 There are (T -2)(T - )/ 1 2 restrictions in passing from 
(3.10) to (3.8) and (3.5) imposes an additional (T - l)(T + 4)/2 - 1 restrictions. 

3.3. Serial correlation and lagged dependent variables 

Consider the following two models: 

1, ifyT=u,ZO, 

0, otherwise; u, = pu,_, + e,; 

otherwise; u, = PU,_~ + e,; 

(3.11b) 

(3Xb) 

in both cases e, is i.i.d. N(0,a2). Heckman (1978) observed that we can dis- 
tinguish between these two models.22 In the first model, 

~b,=llY,-,9YL2Y. ) = pb, =wL,) = eY-,/fJ), 

where F( .) is the standard normal distribution function. In the second model, 
however, P(y, =lly,_,, y,_, ,... ) depends upon the entire history of the process. 
If we observed u,_i, then previous outcomes would be irrelevant. In fact, we 
observe only whether u,_ r 2 0; hence conditioning in addition on whether u,_~ 2 0 
affects the distribution of u,_i and y,. So the lagged y implies a Markov chain 
whereas the Markov assumption for the probit residual does not imply a Markov 
chain for the binary sequence that it generates. 

2’Conditional likelihood ratio tests are discussed in Andersen (1971). 
“Also see Heckman (1981, 1981b). 
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There is an analogy with the following linear models: 
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Y, = YY,-1 + et, (3.12a) 

y, = u,, 2.4, = e, + pet-l, (3.12b) 

where e, is i.i.d. N(0, u*)_ We know that if U, = pul-i + e,, then no distinction 
would be possible, without introducing more structure, since both models imply a 
linear Markov process. With the moving average residual, however, the serial 
correlation model implies that the entire past history is relevant for predicting y. 
So the distinction between the two models rests on the order of the dependence 
on previous realizations of y,. 

We can still distinguish between the two models in (3.11) even when ( ul,. . . , ur> 
has a general multivariate normal distribution (N( IL, 2)). Given normalizations 
such as V(u,)=l (t =l,..., T), the serial correlation model has r( T + 1)/2 free 
parameters. Hence, if T 2 3, there are restrictions on the 2T - 1 parameters of the 
multinomial distribution for ( yi, . . . , yT). In particular, the most general multi- 
variate probit model cannot generate a Markov chain. So we can add a lagged 
dependent variable and identify y. 

This result relies heavily on the restrictive nature of the multivariate probit 
functional form. A more robust distinction between the two models is possible 
when there is variation over time in x,. We shall pursue this after first presenting 
a generalization of strict exogeneity and noncausality for nonlinear models. 

Let t = 1 be the first period of the individual’s (economic) life. An extension of 
Granger’s definition of “y does not cause x” is that x,+i is independent of 
y,, . . . ,y, conditional on xi,. . . , x,. An extension of Sims’ strict exogeneity condi- 
tion is that y, is independent of x,+ i, x,+*, . . . conditional on xi,. . . ,x,. In contrast 
to the linear predictor case, these two definitions are no longer equivalent.23 For 
consider the following counterexample: let yi, y, be independent Bernoulli ran- 
dom variables with P( y, = 1) = P( y, = - 1) = l/2 (t = 1,2). Let xj = y, y2. Then y, 
is independent of x3 and y, is independent of x3. Let all of the other random 
variables be degenerate (equal to zero, say). Then x is strictly exogenous but x3 is 
clearly not independent of yi, y2 conditional on xi, x2. The counterexample works 
for the following reason: if a random variable is uncorrelated with each of two 
other random variables, then it is uncorrelated with every linear combination of 
them; but if it is independent of each of the other random variables, it need not 
be independent of every function of them. 

Consider the following modification of Sims’ condition: y, is independent of 
X t+l*X,+*t-.- conditional on x1,. . . ,x,, y,, . . . ,y,_ 1 (t = 1,2,. . . ). Chamberlain 
(1982) shows that, subject to a regularity condition, this is equivalent to our 

23See Chamberlain (1982) and Florens and Mouchart (1982) 
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extended definition of Granger noncausality. The regularity condition is trivially 
satisfied whenever y, has a degenerate distribution prior to some point. SO it k 

satisfied in our case since y,, y _ 1, . . . have degenerate distributions. 
It is straightforward to introduce a time-invariant latent variable into these 

definitions. We shall say that “y does not cause x conditional on a latent variable c” 
if either: 

x,+i isindependentofy, ,..., y,conditionalonx, ,..., x,,c(t=1,2 ,... ), 

01 

y, is independent of x,+~,x,+~ ,... conditional on x1 ,..., x,, y1 ,..., Y,-~,c (t = 
1,2,...); 

they are equivalent. We shall say that “x is strictly exogenous conditional on a 
latent variable c” if: 

y, is independent of x,+l,x,+z ,... conditional on x1 ,..., x,,c (t =1,2 ,... ). 

Now let us return to the problem of distinguishing between serial correlation 
and structural lagged dependent variables. Assume throughout the discussion that 
x, and y, are not independent. We shall say that the relationship of x toy is static 
if: 

x is strictly exogenous and y, is independent of x,, . . . ,xt_ 1 conditional on x,. 

Then I propose the following distinctions: 

There is residual serial correlation if y, is not independent of y,, , , , ,y,- 1 conditional 
on x 1,...,xt, 

If the relationship of x to y is static, then there are no structural lagged dependent 
variables. 

Suppose that y, and x, are binary and consider the probability that y2 = 1 
conditional on (xi, x2) = (0,O) and conditional on (x,, x2) = (1,O). Since y, and x, 
are assumed to be dependent, the distribution of y, is generally different in the 
two cases. If y, has a structural effect on y,, then the conditional probability of 
y, = 1 should d ff i er in the two cases, so that y2 is not independent of x1 
conditional on x2. 

Note that this condition is one-sided: I am only offering a condition for there 
to be no structural effect of y,_, on y,. There can be distributed lag relationships 
in which we would not want to say that y,_, has a structural effect on yr. Consider 
the production function example with serial correlation in rainfall; assume for the 
moment that there is no variation in c. If the serial correlation in rainfall is not 
incorporated in the farmer’s information set, then our definitions assert that there 
is residual serial correlation but no structural lagged dependent variables, since 
the relationship of x toy is static. Now suppose that the farmer does use previous 
rainfall to predict future rainfall. Then the relationship of x toy is not static since 
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x is not strictly exogenous. But we may not want to say that the relationship 
between y,_ i and yt is structural, since the technology does not depend upon y,_ r. 

How are these distinctions affected by latent variables? It should be clear that a 
time-invariant latent variable can produce residual serial correlation. A major 
theme of the paper has been that such a latent variable can also produce a failure 
of strict exogeneity. So consider conditional versions of these properties: 

There is residual serial correlation conditional on a latent variable c if y, is not 
independent of y,, . _ _ , y, 1 conditional on x1,. . . ,x,, c; 

The relationship of x to y is static conditional on a latent variable c if x is strictly 
exogenous conditional on c and if y, is independent of x1,. . .,xI_ 1 conditional on 
xt, c; 

If the relationship of x toy is static conditional on a latent variable c, then there are 
no structural lagged dependent variables. 

A surprising feature of the linear predictor definition of strict exogeneity is that 
it is restrictive to assert that there exists some time-invariant latent variable c such 
that x is strictly exogenous conditional on c. This is no longer true when we use 
conditional independence to define strict exogeneity. For a counterexample, 
suppose that x, is a binary variable and consider the conditional strict exogeneity 
question: “Does there exist a time-invariant random variable c such that y, is 
independent of xi,. . . ,xT conditional on xi,. . . ,xt, c?” The answer is “yes” since 
we can order the 2T possible outcomes of the binary sequence (xi,. . . , xT) and set 
~=jifthejthoutcomeoccurs(j=1,...,2~).Nowy~isindependentofx,,...,x, 
conditional on c! 

For a nondegenerate counterexample, let y and x be binary random variables 
with: 

component. Hence y is in 
the interior of the convex hull of { e,, m = 1,. . . ,4}. Now consider the vector: 

r 6X 
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The components of ~(6, A) give the probabilities P(y = a,, x = ak) when y and 
x are independent with P(y = 1) = 6, P(x = 1) = h. Set e; = y(S,, X,,,) with 
0 < 15, < 1,O < A, < 1. Then y will be in the interior of the convex hull of { ez, 
m=l ,...,4} if we choose a,,,, X,,, so that ez is sufficiently close to e,. Hence: 

4 

Y= C %t*eZ, Y, ’ 0, i y,*=l. 
m=l m=l 

Let the components of ei be (7$, $, $, 22 7”‘). Let c be a random variable with 
P(c=m)=y,* (m=1,...,4), and set 

P(y=a,,x=akIc=m)=$. 

Now y is independent of x conditional on c, and the conditional distributions are 
nondegenerate. 

If (Xi,...&-, Yl,..., yr) has a general multinomial distribution, then a 
straightforward extension of this argument shows that there exists a random 
variable c such that ( y,, . . . ,yr) is independent of (xi,. . .,x,) conditional on c, 
and the conditional distributions are nondegenerate. 

A similar point applies to factor analysis. Consider a linear one-factor model. 
The specification is that there exists a latent variable c such that the partial 
correlations between y,, . . . , yT are zero given c. This is restrictive if T > 3. But we 
now know that it is not restrictive to assert that there exists a latent variable c 
such that y,, . _ . ,y, are independent conditional on c. 

It follows that we cannot test for conditional strict exogeneity without imposing 
functional form restrictions; nor can we test for a conditionally static relationship 
without restricting the functional forms. 

This point is intimately related to the fundamental difficulties created by 
incidental parameters in nonlinear models. The labor force participation example 
is assumed to be static conditional on c. We shall present some tests of this in 
Section 5, but we shall be jointly testing that proposition and the functional forms 
-a truly nonparametric test cannot exist. We stressed in the probit model that 
the specification for the distribution of c conditional on x is restrictive; we 
avoided such a restrictive specification in the logit model but only by imposing a 
restrictive functional form on the distribution of y conditional on x, c. 

3.4. Duration models 

In many problems the basic data is the amount of time spent in a state. For 
example, a complete description of an individual’s labor force participation 
history is the duration of the first spell of participation and the date it began, the 
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duration of the following spell of nonparticipation, and so on. This complete 
history will generate a binary sequence when it is cut up into fixed length periods, 
but these periods may have little to do with the underlying process.24 

In particular, the measurement of serial correlation depends upon the period of 
observation. As the period becomes shorter, the probability that a person who 
worked last period will work this period approaches one. So finding significant 
serial correlation may say very little about the underlying process. Or consider a 
spell that begins near the end of a period; then it is likely to overlap into the next 
period, so that previous employment raises the probability of current employ- 
ment. 

Consider the underlying process of time spent in one state followed by time 
spent in the other state. If the individual’s history does not help to predict his 
future given his current state, then this is a Markov process. Whereas serial 
independence in continuous time has the absurd implication that mean duration 
of a spell is zero, the Markov property does provide a fruitful starting point. It 
has two implications: the individual’s history prior to the current spell should not 
affect the distribution of the length of the current spell; and the amount of time 
spent in the current state should not affect the distribution of remaining time in 
that state. 

SC the first requirement of the Markov property is that durations of the spells 
be independent of each other. Assuming stationarity, this implies an alternating 
renewal process. The second requirement is that the distribution of duration be 
exponential, so that we have an alternating Poisson process. We shall refer to 
departures from this model as duration dependence. 

A test of this Markov property using binary sequences will depend upon what 
sampling scheme is being used. The simplest case is point sampling, where each 
period we determine the individual’s state at a particular point in time, such as 
July 1 of each year. Then if an individual is following an alternating Poisson 
process, her history prior to that point is irrelevant in predicting her state at the 
next interview. So the binary sequence generated by point sampling should be a 
Markov chain. 

It is possible to test this in a fixed effects model that allows each individual to 
have her own two exponential rate parameters ( cil, ci2) in the alternating Poisson 
process. The idea is related to the conditional likelihood approach in the fixed 
effects logit model. Let s,~~ be the number of times that individual i is observed 
making a transition from statej to state k (j, k = 1,2). Then the initial state and 
these four transition counts are sufficient statistics for the Markov chain. Se- 
quences with the same initial state and the same transition counts should be 
equally likely. This is the Markov form of de Finetti’s (1975) partial exchangeabil- 

24This point is discussed in Singer and Spileman (1974, 1976). 



1284 G. Chamberlain 

ity. 25 So we can test whether the Markov property holds conditional on Gil, c,~ by 
testing whether there is significant variation in the sample frequencies of se- 
quences with the same transition counts. 

This analysis is relevant if, for example, each year the survey question is: “Did 
you have a job on July 1. 7” In the Michigan Panel Study of Income Dynamics, 
however, the most commonly used question for generating participation se- 

’ . quences is. “Did your wife do any work for money last year?” This interval 
sampling leads to a more complex analysis, since even if the individual is 
following an alternating Poisson process, the binary sequence generated by this 
sampling scheme is not a Markov chain. Suppose that Y,_ 1 = 1, so that we know 
that the individual worked at some point during the previous period. What is 
relevant, however, is the individual’s state at the end of the period, and Y,_~ will 
affect the probability that the spell of work occurred early in period t - 1 instead 
of late in the period. 

Nevertheless, it is possible to test whether the underlying process is alternating 
Poisson. The reason is that if y,_, = 0, we know that the individual never worked 
during period t - 1, and so we know the state at the end of that period; hence 

.Y-2~Y,-3~... are irrelevant. So we have: 

where d is the number of consecutive preceding periods that the individual was in 
state 1. 

Let soi be the number of times in the sequence that 1 is preceded by 0; let soit 
be the number of times that 1 is preceded by 0,l; etc. Then sufficient statistics are 

~Ol,~Oll,-.., as well as the number of consecutive ones at the beginning (n,) and 
at the end (nr) of a sequence. 26 For an example with T = 5, let n, = 0, n5 = 0, 
s o1 = 1, soli = 1, solit = . ’ . = 0; then we have 

P(O,l,l,O,Ole) 

2SWe are using the fact that partial exchangeability is a necessary condition for the distribution to 
be a mixture of Markov chains. Diaconis and Freedman (1980) study the sufficiency of this condition. 
Heckman (1978) used exchangeability to test for serial independence in a fixed effects model. 

26This test was presented in Chamberlain (1978a, 1979). It has been applied to unemployment 
sequences by Corcoran and Hill (1980). For related tests and extensions, see Lee (1980). 
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where c = (ci, cl). Thus these two sequences are equally likely conditional on c, 
and letting p be the probability measure for c gives: 

P(o,l,LO,O) = jP(O,l,l,O,olc)p(dc) 

= P O,O,l,l,Olc)~(dc)= P(O,O,l,l,O). 
/( 

So the alternating Poisson process implies restrictions on the multinomial distri- 
bution for the binary sequence. 

These tests are indirect. The duration dependence question is clearly easier to 
answer using surveys that measure durations of spells. Such duration data raises a 
number of new econometric problems, but we shall not pursue them here.27 I 
would simply like to make one connection with the methods that we have been 
discussing. 

Let us simplify to a one state process; for example, Y,, can be the duration of 
the time interval between the starting date of the ith individual’s t th job and his 
(t + 1)th job. Suppose that we observe T > 1 jobs for each of the N individuals, a 
not innocuous assumption. Impose the restriction that Y,, > 0 by using the 
following specification: 

Ylt = exp@x,, + c, + u,,), 

E*(u,,lx,)=O (t=l,..., T), 

where xi = (xii,. . . ,x,~). Then: 

E*(ln Y,((x,) = /3xil + A’xi, 

and our Section 2 analysis applies. The strict exogeneity assumption has a 
surprising implication in this context. Suppose that xit is the individual’s age at 
the beginning of the tth job. Then x,~ 
exogenous.28 

- x;,~_~ = Y,,t_i-age is not strictly 

4. Inference 

Consider a sample r;‘=(xi, y:), i=l,..., N, where x(=(xil ,..., xiK), J+‘= 

(Y;,,... ,y,,,,). We shall assume that 5 is independent and identically distributed 
(i.i.d.) according to some multivariate distribution with finite fourth moments 

27See Tuma (1979, 1980), Lancaster (1979), Nickel1 (1979), Chamberlain (1979), Lancaster and 
Nickel1 (1980). Heckman and Bojas (1980), Kiefer and Neumann (1981). and Flinn and Heckman 
(1982, 1982a). 

2”This example is based on Chamberlain (1979). 
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and E( x,x;) nonsingular. Consider the minimum mean-square error linear predic- 
tors,29 

E*(Y&;) = G; (M =l,...,M), 

which we can write as: 

E*( Y~IXi)=nXI, I7= E( y,x,‘)[E(xix,)] -I. 

We want to estimate II subject to restrictions and to test those restrictions. For 
example, we may want to test whether a submatrix of II has the form /?I + IA’. 

We shall not assume that the regression function E( y;yilx;) is linear. For 
although E( y, Ix;, ci) may be linear (indeed, we hope that it is), there is generally 
no reason to insist that E(cilxj) is linear. So we shall present a theory of inference 
for linear predictors. Furthermore, even if the regression function is linear, there 
may be heteroskedasticity-due to random coefficients, for example. So we shall 
allow E[( y, - IIxi)( y, - IIxj)‘lxi] to be an arbitrary function of xi. 

4.1. The estimation of linear predictors 

Let w, be the vector formed from the distinct elements of riq’ that have nonzero 
variance.30 Since ‘I’ = (x;, y,‘) is i.i.d., it follows that wi is i.i.d. This simple 
observation is the key to our results. Since II is a function of E( w,), our problem 
is to make inferences about a function of a population mean, under random 
sampling. 

Let p = E( w;) and let n be the vector formed from the columns of II’ 
(n = vec(IT’)). Then rr is a function of cc: rr = /r(p). Let 5 = Cr=twi/N; then 
li = Ir( W) is the least squares estimator: 

By the strong law of large numbers, W converges almost surely to p” as N -+ co 
(-,“s,o), where p” is the true value of p. Let rr” = /r (PO). Since A(p) is con- 

tinuous at p = PO, we have 7i “2 R ‘. The central limit theorem implies that: 

29This agrees with the definition in Section 2 if x, includes a constant. 
‘“Sections 4.1-4.4 are taken from Chamberlain (1982a). 
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Since /t(c) is differentiable at p = PO, the d-method gives 

m(7i - Tr”) 2 N(O,52), 
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where 

We have derived the limiting distribution of the least squares estimator. This 
approach was used by Cramer (1946) to obtain limiting normal distributions for 
sample correlation and regression coefficients (p. 367); he presents an explicit 
formula for the variance of the limiting distribution of a sample correlation 
coefficient (p. 359). Kendall and Stuart (1961, p. 293) and Goldberger (1974) 
present the formula for the variance of the limiting distribution of a simple 
regression coefficient. 

Evaluating the partial derivatives in the formula for P is tedious. That calcula- 
tion can be simplified since li has a “ratio” form. In the case of simple regression 
with a zero intercept, we have n = E(y,x,)/E(x,!) and 

Since cc rxf/N a~s’ + E(xf), we obtain the same limiting distribution by working 

with 

I? [(r; - ~"+il/[~E(xf)l~ 
1=1 

The definition of rr” gives E[(y, - n”x,)xi] = 0, and so the central limit theorem 
implies that : 

This approach was used by White (1980) to obtain the limiting distribution for 
univariate regression coefficients. 32 In the Appendix (Proposition 6) we follow 

“See Billingsley (1979, example 29.1, p. 340) or Rao (1973, p. 388). 
3zAlso see White (1980a,b). 
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White’s approach to obtain: 

G. Chamberlain 

52= E[( y, -II’x,)( y, -~“~i)~~~~‘(x;~‘)~~l], (4.1) 

where @I = E(x,x;). A consistent estimator of 51 is readily available from the 
corresponding sample moments: 

(4.2) 

where S, = C;“=,x&/N. 
If E( y,Jx,) = IIxi, so that the regression function is linear, then: 

52 = E[ I’( y,lx,)@‘D;‘( x,x;)@,-‘]. 

If V( y,lx,) is uncorrelated with x,x;, then: 

ii?= E[ V( y,lx,)] s@;‘. 

If the conditional variance is homoskedastic, so that V( y,lx,) = Z does not 
depend on x,, then: 

4.2. Imposing restrictions: The minimum distance estimator 

Since I7 is a function of E( w,), restrictions on II imply restrictions on E( w,). Let 
the dimension of p = E( wj) be q. 33 We shall specify the restrictions by the 
condition that I( depends only on a p x 1 vector 8 of unknown parameters: 
f~ = g(O), where g is a known function and p I q. The domain of 0 is ‘Yf’, a subset 
of p-dimensional Euclidean space (RJ’) that contains the true value 0’. So the 
restrictions imply that p” = g( 0’) is confined to a certain subset of Rq. 

We can impose the restrictions by using a minimum distance estimator: choose 
e to 

“If there is one element in r,r,’ with zero variance, then q = [(K + M)( K + M + 1)/21-l. 
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where A, “2 e and q is positive definite. 34 This minimization problem is equiva- 

lent to the following one: choose 4 to 

The properties of 8 are developed, for example, in Malinvaud (1970, ch. 9). Since 
g does not depend on any exogenous variables, the derivation of these properties 
can be simplified considerably, as in Chiang (1956) and Ferguson (1958).35 

For completeness, we shall state a set of regularity conditions and the proper- 
ties that they imply: 

Assumption 1 

aNa2g(Bo); T i s a compact subset of RP that contains 8’; g is continuous on 2’, 

and g(0) = g(@‘) for 8 E ‘I’ implies that 8 = 0’; A, az ‘k, where !P is positive 

definite. 

Assumption 2 

fira, - g(d”)] 2 N(O, A); 2’ contains a neighborhood E. of 8’ in which g has 

continuous second partial derivatives; rank (G) = p, where G = ag(8’)/afl’. 

Choose 4 to 

Proposition 1 

If Assumption 1 is satisfied, then 8 “2 8’. 

Proposition 2 

If Assumptions 1 and 2 are satisfied, then m(8 - 0’) 2 N(O, A), where 

A = (G?PG)-‘G’qAqG(GYG)-‘. 

If A is positive definite, then A -(G’A-‘G)-’ is positive semi-definite; hence an 
optimal choice for 9 is A-‘. 

34This application of nonlinear generalized least squares was proposed in Chamberlain (1980a). 
“‘Some simple proofs are collected in Chamberlain (1982a). 
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Proposition 3 

If As;umptions 1 and 2 are satisfied, if A is a q X q positive-definite matrix, and if 

A, +A-', then: 

Now consider imposing additional restrictions, which are expressed by the 
condition that 8 = f(a), where a is s x l(s < p). The domain of a is Yi, a subset 
of RS that contains the true value u”. So 8’ = f(a”) is confined to a certain subset 
of RP. 

Assumption 2’ 

!I’, is a compact subset of R” that contains a’; f is a continuous mapping from 
?‘i into c f(a) = 8’ for a E 'T, implies a = a’; ‘Z’t contains a neighborhood of a0 
in which f has continuous second partial derivatives; rank (F) = s, where 
F= i?f(aO)/&x'. 

Let h(a)=g[f(a)]. Choose 8 to 

a% [UN -~(a)]‘-%&, - +d]. 
1 

Proposition 3’ 
as. 

If Assumptions 1, 2, and 2’ are satisfied, if A is positive definite, and if A, ---) A-‘, 

D 
then d, - d, --$ x2( p - s), where 

d,=N[+ -+q]‘A,[u,-+g], 

d,= N[u, -iz@$%[uN -d@l. 

Furthermore, d, - d, is independent of d, in their limiting joint distribution. 

Suppose that the restrictions involve only II. We specify the restrictions by the 
condition that 7r = f(6), where S is s x 1 and the domain of S is Z’,, a subset of R” 
that includes the true value 6’. Consider the following estimator of So: choose b to 

8f$g [li- f(s)]‘8-‘[li- f(S)], 
I 

where fi is given in (4.2), and we assume that Jz in (4.1) is positive definite. If Z’i 
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and f satisfy Assumptions 1 and 2, then b “2 So, 
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and 

N[li- f(b)]W’[li- f(6)] ~xym-s), 

where F = ilf(i3°)/~&. 
We can also estimate So by applying the minimum distance procedure to W 

instead of to ii. Suppose that the components of IV; are arranged so that 
IV: = (IV;, $z ), where w,r contains the components of n, y;. Partition /J = E( VV;) 
conformably: c’= (&, &). Set 8’= (e;, 0;) = (S’, pi). Assume that V( w,) is 
positive definite. Now choose 8 to 

a.s. 
where A, -+ V-‘( rvi), 

and g,(r,p,) =p,. Then 8, gives an estimator of 6’; it has the same limiting 
distribution as the estimator 8 that we obtained by applying the minimum 
distance procedure to ii.36 

This framework leads to some surprising results on efficient estimation. For a 
simple example, we shall use a univariate linear predictor model, 

E*b+,l, x,2) = 7ro + 7rlX,l + 7r1x;*. 

Consider imposing the restriction rrZ = 0. Then the conventional estimator of rrt is 
$,<,, the slope coefficient in the least squares regression of y on x1. We shall show 
that this estimator is generally less efficient than the minimum distance estimator 
if the regression function is nonlinear or if there is heteroskedasticity. 

Let 7jl, ;rZ be the slope coefficients in the least squares multiple regression of y 
on x1, x2. The minimum distance estimator of rI under the restriction rrl = 0 can 
be obtained as 8 = +, + r$, where r is chosen to minimize the (estimated) 

‘%ee Chamberlain (1982a, proposition 9) 
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variance of the limiting distribution of 8; this gives: 

G. Chamberlain 

A 

$= a12 
7i1- ,7j2, 

*22 

where Lijk is the estimated covariance between fij and 7jk in their limiting 
distribution. Since 7i, = byx, - 7j2bxZx,, we have: 

If E(y,lx,i, xi2) is linear and if V(y,lx,i, xi2) = u2, then w12/w22 = 
-cov(xil, xi2)/V(xil) and 6 = byx,. But in general 8 # byx, and 8 is more efficient 
than $_. The source of the efficiency gain is that the limiting distribution of fi2 
has a zero mean (if 7r2 = 0), and so we can reduce variance without introducing 
any bias if 7;2 is correlated with b,_.,. Under the assumptions of linear regression 
and homoskedasticity, by_ and ti2 are uncorrelated; but this need not be true in 
the more general framework that we are using. 

4.3. Simultaneous equations: A generalization of three-stage least squares 

Given the discussion on imposing restrictions, it is not surprising that two-stage 
least squares is not, in general, an efficient procedure for combining instrumental 
variables. Also, three-stage least squares, viewed as a minimum distance estima- 
tor, is using the wrong norm in general. 

Consider the standard simultaneous equations model: 

y,=&,+u. I) E( I&) = 0, 

ry, + Bx, = 4, 

where IY7 + B = 0 and Tui = vi. We are continuing to assume that yi is M x 1, xi 
is K x 1, 5’ = (x;, y/) is i.i.d. according to a distribution with finite fourth 
moments (i = 1 , . . . ,N), and that E(x,x;) is nonsingular. There are restrictions on 
r and B: m(r, B) = 0, where m is a known function. Assume that the implied 
restrictions on I7 can be specified by the condition that n = vec(IT’) = f(S), 
where the domain of 6 is ??i, a subset of R” that includes the true value 
S”(s 5 MK). Assume that Yi and f satisfy assumptions 1 and 2; these properties 
could be derived from regularity conditions on m, as in Malinvaud (1970, 
proposition 2, p. 670). 

Choose 8 to 
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where fi is given in (4.2) and we assume that 52 in (4.1) is positive definite. Let 

F= df(~0)/&9’. Then we have fi(8 - So) 2 N(O,A), where A = (F’SZ-‘F)pl. 

This generalizes Malinvaud’s minimum distance estimator (p. 676); it reduces to 
his estimator if UPUP is uncorrelated with x,x,‘, so that 52 = E(u~u~‘)@[E(x,~;)]~’ 
(Up = y, - II%,). 

Now suppose that the only restrictions on r and B are that certain coefficients 
are zero, together with the normalization restrictions that the coefficient of y,, in 
the m th structural equation is one. Then we can give an explicit formula for A. 
Write the mth structural equation as: 

where the components of z,,,, are the variables in y, and x, that appear in the mth 
equation with unknown coefficients. Let there be M structural equations and 
assume that the true value To is nonsingular. Let S,, be the following block-diago- 
nal matrix: 

and s,,, = N-‘C~=iy,@x,. Let up’= (u~,...,u~~), where up, = y,, - Si’z;, and 8: 
is the true value; let az,, = E(X,) and GX = E( x,x;). Let 6’ = (a;, . _ . , aa). Then we 
have: 

= (@~X[E(~;~;‘@x,x;)] -1@;X)-1.37 (4.3) 

If UPUP’ is uncorrelated with xix;, then this reduces to: 

which is the conventional asymptotic covariance matrix for three-stage least 
squares [Zellner and Theil (1962)]. 

There is a generalization of three-stage least squares that has the same limit- 
ing distribution as the generalized minimum distance estimator. Let Y$ = 

NP’C~=i(C,C~~x,x~), where G, = py, + ix, and f”! r”, ^ “” B - B”. Define: 

“See Chamberlain (1982a). 
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The limiting distribution of this estimator is derived in the Appendix (Proposition 
6). We record it as: 

Proposition 4 

~(8G,-60)%(0,A,, h w ere A is given in (4.3). This generalized three-stage 

least squares estimator is asymptotically efficient within the class of minimum 
distance estimators. 

Our derivation of the limiting distribution of hGG3 relies on linearity. For a 
generalized nonlinear three-stage least squares estimator, see Hansen (1982).38 

4.4. Asymptotic efficiency: A comparison with the quasi-maximum 
likelihood estimator 

Assume that ‘; is i.i.d. (i=1,2 ,...) f rom a distribution with E(c) = 7, V(r;) = X, 
where X is a J x J positive-definite matrix; the fourth moments are finite. 
Suppose that we wish to estimate functions of Z subject to restrictions. Let 
u = vet(Z) and express the restrictions by the condition that u = g(e), where g is 
a function from ?’ into Rq with a domain T c RP that contains the true value 
0’( q = J2; p I J( J + 1)/2). Let 

s=+ f (q-r)();-i)‘, 
1=1 

and let s = vet(S). 
If the distribution of r, is multivariate normal, then the log-likelihood function 

is: 

If there are no restrictions on 7, then the maximum likelihood estimator of 8’ is a 
solution to the following problem: Choose 4 to solve: 

We shall derive the properties of this estimator when the distribution of ‘i is not 
necessarily normal; in that case we shall refer to the estimator as a quaa-maxi- 
mum likelihood estimator ( @QML).39 

3XThere are generalizations of two-stage least squares in Chamberlain (1982a) and White (1982a). 
“The quasi-maximum likelihood terminology was used by the Cowles Commission; see Malinvaud 

(1970, p. 678). 
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MaCurdy (1979) considered a version of this problem and showed that, under 
suitable regularity conditions, fi(t&,,, - do) has a limiting normal distribution; 
the covariance matrix, however, is not given by the standard information matrix 
formula. We would like to compare this distribution with the distribution of the 
minimum distance estimator. 

This comparison can be readily made by using theorem 1 in Ferguson (1958). 
In our notation, Ferguson considers the following problem: Choose 8 to solve 

W(SJ)[S-g(e)] =O. 

He derives the limiting distribution of @(6 - 0’) under regularity conditions on 
the functions W and g. These regularity conditions are particularly simple in our 
problem since W does not depend on S. We can state them as follows: 

Assumption 3 

So c RJ’ is an open set containing 8’; g is a continuous, one-to-one mapping of Z. 
into Rq with a continuous inverse; g has continuous second partial derivatives in 
Sob; rank [ dg(O)/H’] = p for B E 4; X(e) is nonsingular for 0 E Eo. 

In addition, we shall need Sa: g(8’) and the central limit theorem result that 

fi(s - g(e”)) 2 N(O,A), where A = V[(c - T’)@(c - TO)]. 

Then Ferguson’s theorem implies that the likelihood equations almost surely 
have a unique solution within Z. for sufficiently large N, and fi(&,_ - 

0’) 2 N(O, A), where 

n = (G’~G)-‘G’~A~G(G’~G)-‘, 

and G = 8g(8°)/Je’, !P= (X08X0)-‘. It will be convenient to rewrite this, 
imposing the symmetry restrictions on X. Let u* be the J( J + 1)/2 X 1 vector 
formed by stacking the columns of the lower triangle of X. We can define a 
J2~[J(J+1)/2]matrix Tsuchthata=Ta*. The elements in each row of T are 
all zero except for a single element which is one; T has full column rank. Let 
3 = Ti* g(e) = Tg*(e), G* = dg*(eo)/ae: (k* = Tfw; then JR[s* - 

‘D 
g*( e”)] -+ N(O, A*), where A* is the covariance matrix of the vector formed from 

the columns of the lower triangle of (I; - r’)(r;: - 7’)‘. Now we can set 

A = (G’*~*G*)-‘(G’*~*A#~*c*)(G’*~*G*)-~. 

Consider the following minimum distance estimator. Choose d,,, to 

BET 
min[s*-g*(e)]‘A,[3*-g*(e)], 
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where 2’ is a compact subset of Z0 that contains a neighborhood of 8’ and 
a.s. 

A N + q*. Then the following result is implied by Proposition 2. 

Proposition 5 

If Assumption 3 is satisfied, then fi(i&,,, - 
tion as &?(e,, - f3’). 

0’) has the same limiting distribu- 

a.s. 
If A* is nonsingular, an optimal minimum distance estimator has A, --, lA*-‘, 

where 5 is an arbitrary positive real number. If the distribution of r, is normal, 
then A*-’ = (l/2)**; but in general A*-’ is not proportional to \k*, since A* 
depends on fourth moments and ?* is a function of second moments. So in 
general Jo,, is less efficient than the optimal minimum distance estimator that 
uses 

(4.4) 

where SF is the vector formed from the lower triangle of (q - ?)(c - F)‘. 
More generally, we can consider the class of consistent estimators that are 

continuously differentiable functions of S * : 8 = &3*). Chiang (1956) shows that 
the minimum distance estimator based on A*+’ has the minimal asymptotic 
covariance matrix within this class. The minimum distance estimator based on AN 
in (4.4) attains this lower bound. 

4.5. Mukivariate probit models 

Suppose that 

Y I, = rm if 7rAx, + u,, 2 0, 

= 0, otherwise (i=l ,..., N; m =l,..., M), 

where the distribution of u: = (u,i,..., ujM) conditional on x, is multivariate 
normal, N(O, Z). There may be restrictions on rr’ = ( ai’, . . . ,!I&), but we want to 
allow X to be unrestricted, except for the scale normalization that the diagonal 
elements of Z are equal to one. In that case, the maximum likelihood estimator 
has the computational disadvantage of requiring numerical integration over M - 1 
dimensions. 

Our strategy is to avoid numerical integration. We estimate rr”, by maximizing 
the marginal likelihood function that is based on the distribution of y,,, condi- 
tional on x,: 
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where F is the standard normal distribution function. Then under standard 

a.s’ 
D 

assumptions we have ii, + n,,,, ’ the true value. If fi(li - r”) + N(0, jz), then we 

can impose the restriction that n = f(S) by choosing b to minimize 

[it - f(S)]W[li - f(6)]. 

We only need to derive a formula for A2.40 
Our estimator of rr is solving the following equation: 

where 

Q(n)= f { iit y;,Jn F( V&K,) + (1 - Y,,)ln[ 1 - F( TAX, 
i=l m=l 

Hence, the asymptotic distribution of li can be obtained from the theory of 
“M-estimators”. Huber (1967) provides general results, which do not impose 
differentiability restrictions on S(R). His results cover, for example, regression 
estimators based on minimizing the residual sum of absolute deviations. We shall 
not need this generality here and shall sketch the derivation for the simpler, 
differentiable case. This case has been considered by Hansen (1982), MaCurdy 
(1981a), and White (1982).41 

Let zj be i.i.d. according to a distribution with support Z c Rq. Let 8 be an 
open, convex subset of RP and let $(z, 0) be a function from Z X 8 into RP; its 
k th component is rl/k(z, 0). For each 8 E 8, + is a measurable function of z, and 
there is a 8’ E 8 with: 

For each z E Z, a/~ is a twice continuously differentiable function of 6. In addition: 

is nonsingular, and 

ad4w) I I ae, ae, r/l(z) (k,I,m=L...JJ) 

for 0 E 8, where Qh(z,)l< coo. 

@For an alternative approach to multivariate probit models, see Avery, Hansen and Hotz (1981). 
4’Also see Rao (1973, problem 9, p. 378). 
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Suppose that we have a (measurable) estimator 8, E 8 such that d,y 19’ and 

for sufficiently large N a.s. By Taylor’s theorem: 

& ,c ~k(Zi.eo)+[j~k+t(~N-eo)‘c&q~N-~o)] =o, 
l-1 

where 

1 N aGk(zi,eo) 
jNk = z .C ae 9 

cNk = ; ; a2+;f;ee:k) , 
I 

r=l 1=1 

and e;, is on the line segment joining 6, and 8’ (k = 1,. . . ,p). [The measurability 
of Q, follows from lemma 3 of Jennrich (1969).] By the strong law of large 
numbers, jik converges a.s. to the k th row of J, and 

(k,I,m=l ,. . .,p). Hence (4, - e’)‘c,vk + 0 as. and 

m(& -eO) = - DN~ & ,c q(z,,eo) 
I 1 1 

for N sufficiently large a.s. where D, “2 J. By the central limit theorem, 

Hence: 

fl(8, - 6’) 2 N(O, J-'A J'-l). 

Applying this result to our multivariate probit estimator gives: 
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where J=diag{ J1,..., JM} is a block-diagonal matrix with: 
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J,n=E[ {(F’)2/[F(l- F)l}&] 
(F and its derivative F’ are evaluated at rrt’xi); and 

A = E[ H@x,x;], 

where the m, n element of the A4 x M matrix His h,, = emen with 

e, = 
Ylm-F F, 

F(l- F) 
(m=l ,...,W 

(F and F’ are evaluated at r,“‘x,). We obtain a consistent estimator (d) of 
J- ‘A J- ’ by replacing expectations by sample means and using 8 in place of rr”. 
Then we can apply the minimum distance theory of Section 4.2 to impose 
restrictions on 1~. 

5. Empirical applications 

5.1. Linear models: Union wage effects 

We shall present an empirical example that illustrates some of the preceding 
results.42 The data come from the panel of Young Men in the National Longitu- 
dinal Survey (Pames). The sample consists of 1454 young men who were not 
enrolled in school in 1969, 1970, or 1971, and who had complete data on the 
variables listed in Table 5.1. Table 5.2(a) presents an unrestricted least squares 
regression of the logarithm of wage in 1969 on the union, SMSA, and region 
variables for all three years. The regression also includes a constant, schooling, 
experience, experience squared, and race. This regression is repeated using the 
1970 wage and the 1971 wage. 

In Section 2 we discussed the implications of a random intercept (c). If the 
leads and lags are due just to c, then the submatrices of II corresponding to the 
union, SMSA, or region coefficients should have the form PI + IA’. Consider, for 
example, the 3 x 3 submatrix of union coefficients- the off-diagonal elements in 
each column should be equal to each other. So we compare 0.048 to 0.046, 0.042 
to 0.041, and -0.009 to 0.010; not bad. 

“This application is taken from Chamberlain (1982a). 
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Table 5.1 
Characteristics of National Longitudinal Survey Young Men, 
not enrolled in school in 1969, 1970, 1971: Means and 
standard deviations, N = 1454. 

Variable Mean Standard deviation 

LWI 5.64 
LW2 5.74 
LW3 5.82 
Ul 0.336 
112 0.362 
113 0.364 
UI U? 0.270 
Ul u3 0.262 
U?U3 0.303 
Ul U? u3 0.243 
SMSAl 0.697 
SMSAZ 0.627 
SMSA3 0.622 
RNSI 0.409 
RNS? 0.404 
RNS3 0.410 
S 11.7 
EXP69 5.11 
FXP69* 39.8 
RACE 0.264 

0.423 
0.426 
0.437 

2.64 
3.71 

46.6 
- 

Notes: 
L WI, L W2, L W3 -logarithm of hourly earnings (in cents) on the 
current or last job in 1969,1970,1971; LIZ, LIZ, U3-I if wages on 
current or last job set by collective bargaining, 0 if not, in 1969, 
1970.1971; SMSAI, SMSAZ, SMSA3 -1 if respondent in SMSA, 
0 if not, in 1969, 1970, 1971; RNSI, RNSZ, RNS3-1 if respon- 
dent in South, 0 if not, in 1%9,1970,1971; S-years of schooling 
completed; EXP69-(age in 1969-S-6); RACE-1 if respon- 
dent black, 0 if not. 

In Table 5.2(b) we add a complete set of union interactions, so that, for the 
union variables at least, we have a general regression function. Now the submatrix 
of union coefficients is 3 x7. If it equals (/313, O)+ IA’, then in the first three 
columns, the off-diagonal elements within a column should be equal; in the last 
four columns, all elements within a column should be equal. 

I first imposed the restrictions on the SMSA and region coefficients, using the 
minimum distance estimator. D is estimated using the formula in (4.2), and 
A, = 6-l. The minimum distance statistic (Proposition 3) is 6.82, which is not a 
surprising value from a x2(10) distribution. If we impose the restrictions on the 
union coefficients as well, then the 21 coefficients in Table 5.2(b) are replaced by 
8: one j3 and seven h’s. This gives an increase in the minimum distance statistic 
(Proposition 3’) of 19.36-6.82 =12.54, which is not a surprising value from a 
x2(13) distribution. So there is no evidence here against the hypothesis that all the 
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union coverage in the wage change equations. The estimates (standard errors) are 
0.097 (0.019) and -0.119 (0.022). The standard error on the sum of the coeffi- 
cients is 0.024, so again there is no evidence against the simple model with 

lXY,lx,, x2, x3, c) =Bx, + c.43 

Table 5.3(a) exhibits the estimates that result from imposing the restrictions 
using the optimal minimum distance estimator.44 We also give the conventional 
generalized least squares estimates. They are minimum distance estimates in 
which the weighting matrix (AN) is the inverse of 

We give the conventional standard errors based on (F ‘& ‘F)- ’ and the standard 
errors calculated according to Proposition 2, which do not require an assumption 
of homoskedastic linear regression. These standard errors are larger than the 
conventional ones, by about 30%. The estimated gain in efficiency from using the 
appropriate metric is not very large; the standard errors calculated according to 
Proposition 2 are about 10% larger when we use conventional GLS instead of the 
optimum minimum distance estimator. 

Table 5.3(a) also presents the estimated h’s. Consider, for example, an individ- 
ual who was covered by collective bargaining in 1969. The linear predictor of c 
increases by 0.089 if he is also covered in 1970, and it increases by an additional 
0.036 if he is covered in all three years. The predicted c for someone who is 
always covered is higher by 0.102 than for someone who is never covered. 

Table 5.3(b) presents estimates under the constraint that A = 0. The increment 
in the distance statistic is 89.08 - 19.36 = 69.72, which is a surprisingly large value 
to come from a x2(13) distribution. If we constrain only the union h’s to be zero, 
then the increment is 57.06 - 19.36 = 37.7, which is surprisingly large coming 
from a x2(7) distribution. So there is strong evidence for heterogeneity bias. 

The union coefficient declines from 0.157 to 0.107 when we relax the A = 0 
restriction. The least squares estimates for the separate cross sections, with no 

43Using May-May CPS matches for 1977-1978, Mellow (1981) reports coefficients (standard 
errors) of 0.087 (0.018) and -0.069 (0.020) for entering and leaving union membership in a wage 
change regression. The sample consists of 6602 males employed as nonagricultural wage and salary 
workers in both years. He also reports results for 2177 males and females whose age was I 25. Here 
the coefficients on entering and leaving union membership are quite different: 0.198 (0.031) and 
- 0.035 (0.041); it would be useful to reconcile these numbers with our results for young men. Also see 
Stafford and Duncan (1980). 

“We did not find much evidence for nonstationarity in the slope coefficients. If we allow the union 
B to vary over the three years, we get 0.105,0.103,0.114. The distance statistic declines to 18.51, giving 
19.36 - 18.51= 0.85; this is not a surprising value from a x2(2) distribution. If we also free up /3 for 
SMSA and RN& then the decline in the distance statistic is 18.51- 13.44 = 5.07, which is not a 
surprising value from a x2(4) distribution. 



Ch. 22: Panal Data 1303 

Table 5.3 
Restricted estimates. 

(a) 

Coefficients (and standard errors) of: 

I/ SMSA RNS 

8: 0.107 0.056 - 0.082 

/%,s: 
(0.016) (0.020) (0.045) 
0.121 0.050 - 0.085 

(0.013) (0.017) (0.040) 
(0.018) (0.021) (0.052) 

1/l u2 u3 Ul u2 111 u3 c/IL/3 Ul u3 u3 

1: -0023 - 0.067 - 0.082 0.156 0.152 0.195 - 0.229 
(0.030) (0.040) (0.037) (0.057) (0.062) (0.059) (0.085) 

SMSAl SMSAZ SMSA3 RNSI RNS2 RNS3 

0.086 - 0.008 0.032 0.100 - 0.021 - 0.128 
(0.025) (0.046) (0.046) (0.072) (0.077) (0.068) 

x2(23) = 19.36 

(b) Restrict A = 0 

Coetbcients (and standard errors) of: 

U SMSA RNS 

/3: 0.157 0.120 -0.150 
(0.012) (0.013) (0.016) 

x2(36) = 89.08 

Notes: 

E*( Y 1x1 = rlx = rr,x, + ll*x*; x;= (Ul, u2. u3, UlU2, Ul u3, wlJ3. Ul UIU3, 

SMSAl, SMSA2, SMSA3, RNSl, RNSZ, RNS3); x; = (1, S, EXP69. ExP69’, 
RACE). IIt = (&fs, 0, &MsA13, /?RNS13)+ IA’; II, is unrestricted. The restrictions are 
expressed as ‘II = F6, where 8 is unrestricted. b and x are minimum distance estimates 
with Ai1 = 0 in (4.2); floLs and hors are minimum distance estimates with A,; ’ = fis 

in (5.1) (&,s is not shown in the table). The first standard error for &,, is the 
conventional one based on (F’& ‘F) ‘; the second standard error for &,, is based on 
(F’dd; ‘F)-‘F’fi; ‘832; ‘F(F’fi;‘F) ~’ (Proposition 2). The xz statistics are computed 
from N[ir - Fb]‘b’[ri - F&l (Proposition 3). 
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leads or lags, give union coefficients of 0.195, 0.189, and 0.191 in 1969, 1970, and 
1971.45 So the decline in the union coefficient, when we allow for heterogeneity 
bias, is 32% or 44% depending on which biased estimate (0.16 or 0.19) one uses. 
The SMSA and region coefficients also decline in absolute value. The least 
squares estimates for the separate cross sections give an average SMSA coefficient 
of 0.147 and an average region coefficient of - 0.131. So the decline in the SMSA 
coefficient is either 53% or 62% and the decline in absolute value of the region 
coefficient is either 45% or 37%. 

5.2. Nonlinear models: Labor force participation 

We shall illustrate some of the results in Section 3. The sample consists of 924 
married women in the Michigan Panel Study of Income Dynamics. The sample 
selection criteria and the means and standard deviations of the variables are in 
Table 5.4. Participation status is measured by the question: “Did do any 
work for money last year?’ We shall model participation in 1968,1970, 1972, and 
1974. 

In terms of the model described in Section 3.1, the wage predictors are 
schooling, experience, and experience squared, where experience is measured as 
age minus schooling minus six; the tastes for nonmarket time are predicted by 
these variables and by children. The specification for children is a conventional 
one that uses the number of children of age less than six (YK) and the total 
number of children in the family unit ( K).46 Variables that affect only the lifetime 
budget constraint in this certainty model are captured by c. In particular, 
nonlabor income and the husband’s wage are assumed to affect the wife’s 
participation only through the lifetime budget constraint. The individual effect (c) 
will also capture unobserved permanent components in wages or in tastes for 
nonmarket time. 

Table 5.5 presents maximum likelihood (ML) estimates of cross-section probit 
specifications for each of the four years. Table 5.6 presents unrestricted ML 
estimates for all lags and leads in YK and K. If the residuals (u,!) in the latent 

45U~ing the NLS Young Men in 1969 (N = 1362), Griliches (1976) reports a union membership 
coefficient of 0.203. Using the NLS Young Men in a pooled regression for 1966-1971 and 1973 
(N = 470). Brown (1980) reports a coefficient of 0.130 on a variable measuring the probability of 
union coverage. (The union coverage question was asked only in 1969, 1970, and 1971; so this variable 
is imputed for the other four years.) The coefficient declines to ,081 when individual intercepts are 
included in the regression. His regressions also include a large number of occupation and industry 
specific job characteristics. 

46Some of the work on participation and fertility is in Mincer (1963) Willis (1973). Gronau (1973, 
1976, 1977) Hall (1973). Ben-Porath (1973), Becker and Lewis (1973). Mincer and Polachek (1974). 
Heckman (1974, 1980), Heckman and Willis (1977), Cam and Dooley (1976), Schultz (1980). Hanoch 
(1980). and Rosenzweig and Wolpin (1980). 
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variable model (3.1) have constant variance, then al = . . . = a4 in (3.2), and the 
submatrices of II corresponding to YK and K should have the form PI + IA’. 
There may be some indication of this pattern in Table 5.6, but it is much weaker 
than in the wage regressions in Table 5.2. 

We allow for unequal variances and provide formal tests by using the minimum 
distance estimator developed in Section 4.5. In Table 5.7(a) we impose the 
restrictions that 

The minimum distance statistic is 53.8, which is a very surprising value coming 
from a x2(19) distribution. So the latent variable c does not appear to provide an 

Table 5.4 
Characteristics of Michigan Panel Study of Income 
Dynamics married women: Means and standard devia- 
tions, N = 924. 

Variable Mean 

LFPI 0.499 
LFP? 0.530 
LFP3 0.529 
LFP4 0.566 

YKI 0.969 
YK2 0.164 
YK3 0.551 
YK4 0.363 

Kl 2.38 
K2 2.30 
K3 2.11 
K4 1.84 

s 12.1 
EXP68 17.2 
EXP682 368. 

Standard deviation 

- 

1.200 
1.069 
0.895 
0.685 

1.69 
1.64 
1.61 
1.52 

2.1 
8.5 

301. 

Notes: 
LFPZ, , LFP4 -1 if answered “yes” to “Did 
work for money last year?“, 0 otherwise, referring to 1968, 
1970, 1972, 1974; YKI, , YK4 -number of children of 
age less than six in 1968, 1970, 1972, 1974; 
Kl, , K4 -number of children of age less than eighteen 
living in the family unit in 1968,1970,1972,1974; S-years 
of schooling completed; EXP6d-(age in 1968 - S - 6). 
The sample selection criteria required that the women be 
married to the same spouse from 1968 to 1976; not part of 
the low income subsample; between 20 and 50 years old in 
1968; white; out of school from 1968 to 1976; not disabled. 
We required complete data on the variables in the table, 
and that there be no inconsistency between reported eam- 
ings and the answer to the participation question. 
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Table 5.5 
ML probit cross-section estimates 

Dependent 
variable YKI YK? 

Coefficients (and standard errors) of: 

YK3 YK4 KI KZ K3 K4 

LFPI 

LFP2 

LFP3 

LFP4 

-0.246 - - 

(0.046) 
- -0.293 - 

(0.055) 
- - -0.342 - 

(0.067) 
- - - 0.366 

(0.081) 

-0.063 - - 
(0.031) 

- -0.075 - 
(0.031) 

- -0.077 - 
(0.032) 

- - - 0.069 
(0.034) 

Notes: 
Separate ML estimates each year. All specifications include (1, S,EXP68,EXP682). 

adequate interpretation of the unrestricted leads and lags. It may be that the 
distributed lag relationship between current participation and previous births is 
more general than the one implied by summing over the previous six years (YK) 
and over the previous eighteen years (K). It may be fruitful to explore this in 
more detail in future work. Perhaps strict exogeneity conditional on c will hold 
when we use a more general specification for lagged births. But we must keep in 
mind that this question is intrinsically tied to the functional form restrictions-we 
saw in Section 3.3 that there always exist specifications in which y, is independent 
of x 1, . . . , xT conditional on c. 

Table 5.6 
Unrestricted ML probit estimates. 

Dependent 
variable YKI YK2 

Coefficients (and standard errors) of: 

YK3 YK4 KI K2 K3 K4 

LFPl 

LFP2 

LFP3 

LFP4 

- 0.205 
(0.081) 

- 0.047 
(0.079) 

- 0.254 
(0.080) 

-0.195 
(0.079) 

-0.017 
(0.119) 

- 0.238 
(0.117) 
0.214 

(0.116) 
0.252 

(0.118) 

-0.160 
(0.141) 

- 0.047 
(0.140) 

-0.190 
(0.139) 

-0.211 
(0.139) 

0.420 
(0.144) 
0.093 

(0.142) 
-0.209 

(0.141) 
- 0.282 

(0.138) 

0.176 
(0.076) 
0.320 

(0.077) 
0.204 

(0.077) 
0.020 

(0.075) 

- 0.142 
(0.100) 

- 0.278 
(0.102) 

- 0.210 
(0.102) 
0.083 

(0.100) 

- 0.196 
(0.110) 

- 0.250 
(0.110) 

- 0.045 
(0.112) 

-0.181 
(0.110) 

0.063 
(0.090) 
0.177 

(0.090) 
0.030 

(0.090) 
0.058 

(0.090) 

Notes: 
Separate ML estimates each year. All specifications include (1, S, EXP68, EXP68*). 



Table 5.7 
Restricted estimates. 

(a) 

Ccdicienrs (and standard errors) of: 

YK K 
d PO.121 - 0.058 

10.046) 10.029) 

YKI YK? YK3 YK4 KI K? K3 K4 

a,X -0.042 0.038 - 0.050 0.087 0.194 -0118 0.146 0.090 
(0.041) (0.060) (0.070) (0.077) (0.056) (0.062) (0 073) (0.056) 

a 1.585 1 758 1.279 1.0 
(0.392) (0.375) (0.231) (-) 

x*(19) = 53.8 

(b) Restrict X = 0 

YK K 

%S 0.273 - 0.073 
(0.065) (0.023) 

4 4 4 84 
a 0.821 0 930 0.920 1.0 

(0.198) (0.205) (0.191) (- ) 

~‘(27) = 78.4 

(c)Restricta,=l(r=l.. _.4) 

Coefficients (and standard errorsl of: 

YK K 

B -0.193 - 0.070 
(0.043) (0.031) 

YKI YK? YK3 YK4 KI K? K.1 K4 

x - 0.077 0.082 - 0.098 0.102 0.203 -010x -0.157 0 072 
(0.062) (0.082) (0.102) (0.110) (0.063) (0.0X3) (0 09x1 (0.0X1) 

x’(22) = 61.6 

YKI 

(d) Restrict (I, = 1; 8, unrestricted (I = 1.. .4) 

Coefficients (and standard errors) of: 
YKZ YK3 YK4 KI K_’ K3 K4 

B - 0.107 - 0.216 -0.198 -0.277 -0.107 - 0.047 - 0.046 - 0.017 
(0.054) (0.059) (0.067) (0.086) (0.040) (0.035) (0.039) (0.043) 

YKI YKT YK3 YK4 KI K2 K3 K4 

)r -0.111 0.085 -0.102 0.126 0.213 -0.113 -0.155 0 052 
(0.063) (0.083) (0.102) (0.111) (0.064) (0.083) (0.099) (0 082) 

x2(16) = 52.7 

Noles: 
I7, = diag( al,. ,cQ}[/?,.~~~ + NY;,, /lK14 + NK]; I72 is unrestricted. In Table 5.7(d) 
/SYKf4 and BK14 are replaced by diagonal matrices with no restrictions on the 
diagonal elements. All restrictions are imposed by applying the minimum distance 
procedure to the unrestricted estimates of n, in Table 5.6. The asymptotic covariance 
matrix of h, is obtained as in Section 4.5. aq is normalized to equal one. 
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If we do impose the restrictions in Table 5.7(a), then there is strong evidence 
that h # 0. Constraining A = 0 in Table 5.7(b) gives an increase in the distance 
statistic of 78.4- 53.8 = 24.6, which is surprisingly large to come from a x2(8) 
distribution. 

In Table 5.7(c) we constrain all of the residual variances to be equal ( (Y[ = 1). 
An alternative interpretation of the time varying coefficients is provided in Table 
5.7(d), where p, and pK vary freely over time and (Y( = 1. In principle, we could 
also allow the (r, to vary freely, since they can be identified from changes over 
time in the coefficients of c. In fact that model gives very imprecise results and it 
is difficult to ensure numerical accuracy. 

We shall interpret the coefficients on YK and K by following the procedure in 
(3.4). Table 5.8 presents estimates of the expected change in the participation 
probability when we assign an additional young child to a randomly chosen 
family, so that YK and K increase by one. We compute this measure for the 
models in Tables 5.7(a), 5.7(c) and 5.7(d). The average change in the participation 
probability is -0.096. We can get an indication of omitted variable bias by 
comparing these estimates with the ones based on Table 5.7(b), where h is 
constrained to be zero. Now the average change in the participation probability is 
-0.122, so that the decline in absolute value when we control for c is 21%. An 
alternative comparison can be based on the cross-section estimates, with no leads 
or lags, in Table 5.5. Now the average change in the participation probability is 
- 0.144, giving an omitted variable bias of 33%. 

Next we shall consider estimates from the logit framework of Section 3.2. Table 
5.9 presents (standard) maximum likelihood estimates of cross-section logit 
specifications for each of the four years. We can use the cross-section probit 
results in Table 5.5 to construct estimates of the expected change in the log odds 
of participation when we add a young child to a randomly chosen family. Doing 
this in each of the four years gives - 0.502, - 0.598, - 0.683, and - 0.703. With 
the logit estimates, we simply add together the coefficients on YK and K in Table 
5.9; this gives - 0.507, - 0.612, - 0.691, and - 0.729. The average over the four 
years is -0.621 for probit and -0.635 for logit. So at this point there is little 
difference between the two functional forms. 

Now allow for the latent variable (c). Table 5.10 presents the conditional 
maximum likelihood estimates for the fixed effects logit model. The striking result 
here is that, unlike the probit case, allowing for c leads to an increase in the 
absolute value of the children coefficients. If we constrain /3rK and pK to be 
constant over time (Table 5.10(a)), the estimated change in the log odds of 
participation when we add an additional young child is - 0.909. If we allow pyK 
and & to vary freely over time (Table 5.10(b)), the average of the estimated 
changes is - 0.879. So the absolute value of the estimates increases by about 40% 
when we control for c using the logit framework. The estimation method is having 
a first order effect on the results. 
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Table 5.9 
ML logit cross-sectionestimates. 

Dependent 
Coefficients (and standard errors) of: 

variable YKI YK2 YK3 YK4 Kl K2 K3 K4 

LFPI -0.404 - -0.103 - - - 
(0.077) (0.051) 

LFP2 - -0.494 - -0.118 - - 
(0.095) (0.035) 

LFP3 -0.568 - -0.123 - 
(0.114) (0.051) 

LFP4 -0.617 - -0.112 
(0.138) (0.055) 

Notes: 
Separate ML estimates each year. All specifications include (1, S, EXP68, EXP682). 

We have seen that the restrictions on the probit I7 matrix, which underlie our 
estimate of /I, appear to be false. An analogous test in the logit framework is 
based on (3.10). We use conditional ML to estimate a model that includes 
YK;D,, K;D,(s=l,..., 4; t = 2,3,4), where D, is a dummy variable that is one in 
period I and zero otherwise. It is not restrictive TO exclude YK;D, and K; D,, 
since they can be absorbed in c. We include also D,, S-D,, EXP68.D,, and 
EXP68** D, (t = 2,3,4). Then comparing the maximized conditional likelihoods 

Table 5.10 
Conditional ML estimates of the fixed effects logit model. 

(a) 

Coefficients (and standard errors) of: 

YK K 

8 -0.573 - 0.336 
(0.115) (0.120) 

(b) 8, unrestricted (t = 1,. ,4) 

Coefficients (and standard errors) of: 

YKI YK2 YK3 YK4 KI K.? K3 K4 

fi -0.336 -0.679 -0.780 -0.967 -0.315 -0.178 -0.141 -0.120 
(0.144) (0.172) (0.205) (0.242) (0.135) (0.145) (0.155) (0.165) 

Notes: 
A conditional likelihood ratio test of & = . = & gives x2(6) = 8.7. The specifications in 
Tables IO(a) and 10(b) include dummy variables for 1970, 1972, 1974 (0,. I = 2,3,4) and 
the interactions S.O,, EXP&i.D,, EXP682.D, (t = 2,3,4). (Due to the presence of the 
fixed effect c,, it is not restrictive to exclude D,, S, EXP68, EXP682, S.D,, EXP68. D,, 
EXP682 D, .) 
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for this specification and the specification in Table 5.10(b) gives a conditional 
likelihood ratio statistic of 53.9, which is a very surprising value to come from a 
x2(16) distribution. So the restrictions underlying our logit estimates of j? also 
appear to be false. It may be that the false restrictions simply imply different 
biases in the probit and logit specifications. 

6. Conclusion 

Our discussion has focused on models that are static conditional on a latent 
variable. The panel aspect of the data has primarily been used to control for the 
latent variable. Much work needs to be done on models that incorporate uncer- 
tainty and interesting dynamics. Exploiting the martingale implications of time- 
additive utility seems fruitful here, as in Hall (1978) and Hansen and Singleton 
(1982). There is, however, a potentially important distinction between time 
averages and cross-section averages. A time average of forecast errors over T 
periods should converge to zero as T + co. But an average of forecast errors 
across N individuals surely need not converge to zero as N + cc ; there may be 
common components in those errors, due to economy-wide innovations. The same 
point applies when we consider covariances of forecast errors with variables that 
are in the agents’ information sets. If those conditioning variables are discrete, we 
can think of averaging over subsets of the forecast errors; as T -+ 00, these 
averages should converge to zero, but not necessarily as N -+ 00. 

As for controlling for latent variables, I think that future work will have to 
address the lack of identification that we have uncovered. It is not restrictive to 
assert that ( y,, . . . ,yT) and (xi,. . . , xT) are independent conditional on some 
latent variable c. 

Appendix 

Let+=(xj,y;),i=l,..., N,wherex:=(x;, ,..., XiK)andy,‘=(y,t ,..., YrM). Write 
the m th structural equation as: 

Yirn = ai7zim + ‘tm (m =l,...,M), 

where the components of zi, are the variables in y, and X, that appear in the m th 
equation with unknown coefficients. Let S,, be the following block-diagonal 
matrix: 



1312 

and 

G. Chamberlain 

Let @=(uz ,..., $,),whereu~,=y,, - a,$,,,, and 6: is the true value of 6,; let 

@:-, = E(S;,). Let S’= (&;,...,a;) be s xl and set 

Proposition 6 

Assume that (1) q is i.i.d. according to some distribution with finite fourth 

mtrflents; (2) E[x,(y,, - 6,fzl,)] = 0 (m=l,...,M); (3) rank (!Pz:,)=s; (4) 

D + q as N + cc, where 9 is a positive-definite matrix. Then a(8 - 

So) E N(O, A), where 

Proof 

a.s. 
By the strong law of large numbers, S,, -+ @::,; @zsxYI-l@~X is an s X s positive- 

definite matrix since rank = s. So we obtain distribution 
by considering 

Note that $8~; is i.i.d. with E(u~@x,) = 0, V(uy@x,) = E(u$~@‘x,x;). Then 

applying the central limit theorem gives fi(8 - So) 5 N(O, A). Q.E.D. 

This result includes as special cases a number of the commonly used estimators. 

If z,, =x, (m =l,..., M) and D = then is the least squares estimator and A 
reduces to the formula for P given in (4.1). If f = E(u@p)@ E(x,x;), then A is 
the asymptotic covariance matrix for the three-stage least squares estimator. If 
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q = E( u$$@x,x;), then A is the asymptotic covariance matrix for the gener- 
alized three-stage least squares estimator (4.3). 

Consider applying the generalized three-stage least squares estimator to the first 
J equations (J < M). If E(z,~x;) is nonsingular for j = J+ l,...,M, then this 
estimator for (a;, . . . ,a;) has the same asymptotic covariance matrix as the 
estimator obtained by applying the generalized three-stage least squares estimator 
to the full set of A4 equations. This follows from examining the partitioned inverse 
of (4.3). 
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