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This paper presents specification tests that are applicable after estimating a dynamic model 
from panel data by the generalized method of moments (GMM), and studies the practical 
performance of these procedures using both generated and real data. Our GMM estimator 
optimally exploits all the linear moment restrictions that follow from the assumption of no serial 
correlation in the errors, in an equation which contains individual effects, lagged dependent 
variables and no strictly exogenous variables. We propose a test of serial correlation based on 
the GMM residuals and compare this with Sargan tests of over-identifying restrictions and 
Hausman specification tests. 

1. INTRODUCTION 

The purpose of this paper is to present specification tests that are applicable after estimating 
a dynamic model from panel data by the generalized method of moments (GMM) and 
to study the practical performance of these procedures using both generated and real data. 

Previous work concerning dynamic equations from panel data (e.g. Chamberlain 
(1984), Bhargava and Sargan (1983)) has emphasized the case where the model with an 
arbitrary intertemporal covariance matrix of the errors is identified. The fundamental 
identification condition for this model is the strict exogeneity of some of the explanatory 
variables (or the availability of strictly exogenous instrumental variables) conditional on 
the unobservable individual effects. In practice, this allows one to use past, present and 
future values of the strictly exogenous variables to construct instruments for the lagged 
dependent variables and other non-exogenous variables once the permanent effects have 
been differenced out. Bhargava and Sargan (1983) and Arellano (1990) considered 
estimation and inference imposing restrictions on the autocovariances, but the assumption 
that the model with unrestricted covariance matrix is identified was never removed. 

However, sometimes one is less willing to assume the strict exogeneity of an explana- 
tory variable than to restrict the serial correlation structure of the errors, in which case 
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different identification arrangements become available. Uncorrelated errors arise in a 
number of environments. These include rational expectations models where the disturb- 
ance is a surprise term, error-correction models and vector autoregressions. Moreover, 
if there are a priori reasons to expect autoregressive errors in a regression model, these 
can be represented as a dynamic regression with non-linear common factor restrictions 
and uncorrelated disturbances (e.g. Sargan (1980)). In these cases and also in models 
with moving-average errors, lagged values of the dependent variable itself become valid 
instruments in the differenced equations corresponding to later periods. Simple estimators 
of this type were first proposed by Anderson and Hsiao (1981, 1982). Griliches and 
Hausman (1986) have developed estimators for errors-in-variables models whose iden- 
tification relies on assumptions of lack of (or limited) serial correlation in the measurement 
errors. Holtz-Eakin, Newey and Rosen (1988) have also considered estimators of this 
type for vector autoregressions which are similar to the ones we employ in this paper. 

An estimator that uses lags as instruments under the assumption of white noise errors 
would lose its consistency if in fact the errors were serially correlated. It is therefore 
essential to satisfy oneself that this is not the case by reporting test statistics of the validity 
of the instrumental variables (i.e. tests of lack of serial correlation) together with the 
parameter estimates. In this paper we consider three such tests: a direct test on tne 
second-order residual serial correlation coefficient, a Sargan test of over-identifying 
restrictions and a Hausman specification test. The operating characteristics of these tests 
are different as well as their number of degrees of freedom. In addition, depending on 
alternative auxiliary distributional assumptions concerning stationarity and heterogeneity, 
different forms of each of the tests are available. These alternative versions of a given 
test are asymptotically equivalent under the less general set of auxiliary assumptions but 
they still may perform quite differently in finite samples. We have therefore produced a 
number of Monte Carlo experiments to investigate the relative performance of the various 
tests. Finally, as an empirical illustration we report some estimated employment equations 
using the Datastream panel of quoted U.K. companies. 

The paper is organized as follows. Section 2 presents the model and the estimators. 
For a fixed number of time periods in the sample, the model specifies a finite number of 
moment restrictions and therefore an asymptotically efficient GMM estimator is readily 
available. The discussion is kept as simple as possible by concentrating initially on a 
first-order autoregression with a fixed effect. Exogenous variables and unbalanced panel 
considerations are subsequently introduced. Section 3 presents the various tests of serial 
correlation and their asymptotic distributions. Section 4 reports the simulation results. 
Section 5 contains the application to employment equations and Section 6 concludes. 

2. ESTIMATION 

The simplest model without strictly exogenous variables is an autoregressive specification 
of the form 

Yi, = ayi(t-l)+ +,i + Vit, lal < 1. (1) 

We assume that a random sample of N individual time series (yi,... ., YiT) is available. 
T is small and N is large. The vi, are assumed to have finite moments and in particular 
E(vit) = E(vitvij) =0 for t $ s. That is, we assume lack of serial correlation but not 
necessarily independence over time. With these assumptions, values of y lagged two 
periods or more are valid instruments in the equations in first differences. Namely, for 
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Ti_3 the model implies the following m=(T-2)(T-1)/2 linear moment restrictions 

E[(yit - aY-(t_))yj(t_j) = 0 (j = 2, ... , (t -1); t = 3, .. ., T) (2) 

where for simplicity Yi = Yi- Yi(t-i) We wish to obtain the optimal estimator of a as 
N - co for fixed T on the basis of these moment restrictions alone. That is, in the absence 
of any other knowledge concerning initial conditions or the distributions of the vi, and 
the qj. Note that our assumptions also imply quadratic moment restrictions, for example 
E( eit5i(t-2))= 0, which however we shall not exploit in order to avoid iterative procedures. 

This estimation problem is an example of those analyzed by Hansen (1982) and 
White (1982), and an optimal GMM or two-stage instrumental variables estimator should 
be available. The moment equations in (2) can be conveniently written in vector form 
as E(Z'ibi) = 0 where vi = (vi3 . .. lbiT)' and Zi is a (T-2) x m block diagonal matrix whose 
sth block is given by (yi *... Yis) 

The GMM estimator a' is based on the sample moments N-'1 = Z'i3 = N-'Z'i 
where v3=y-ajLl=(iU',..., I'N)' is a N( T-2)x1 vector and Z=(Z,..., Z'N)' is a 
N(T - 2) x m matrix. a is given by 

a = argmina (ViZ)AN(Z') = -lZANZ (3) 
Y_,ZANZ'Y-l' 

Multivariate standard CLT implies that V-1P2N-"Z2Z'I is asymptotically standard normal 
where VN = N- 'E E(Z'ifAiZj) is the average covariance matrix of Ziui. Under our 
assumptions, VN can be replaced by VN = N Zivi3Z, where the Ii are residuals from 
a preliminary consistent estimator at. The one-step estimator ca is obtained by setting 
AN = (N-1 Ei ZHZi)-l where H is a (T-2) square matrix which has twos in the main 
diagonal, minus ones in the first subdiagonals and zeroes otherwise. A consistent estimate 
of avar (c) for arbitrary AN is given by 

aa (a) =NY lZANVNANZ'Y-1 avar( a=N - 

ZN,p_) 
4 

The optimal choice for AN is VN1 (e.g. see Hansen (1982)) which produces a two-step 
A 2 A A estimator a2. a, and a2 will be asymptotically equivalent if the vi, are independent and 

homoskedastic both across units and over time. 
It is useful to relate these estimators to the Anderson-Hsiao (AH) estimator which 

is commonly used in practice. Anderson and Hsiao (1981) proposed to estimate a by 
regressing y on Y-1 using either Y-2 or Y-2 as instruments. Since both Y-2 and Y-2 are 
linear combinations of Z the resulting estimators will be inefficient. Note that under 
stationarity, namely when E(YitYi(t-k)) = Cik for all t, the estimator that uses Z+ = diag (yit) 
(t = 1, .. ., T - 2) is asymptotically equivalent to the one based on the stacked vector Y-2, 

whose computation is much simpler (since AN becomes irrelevant). However neither of 
the two is asymptotically equivalent to a, or a2, not even under stationarity. 

The extension of the previous results to the case where a limited amount of serial 
correlation is allowed in the vit is straightforward. Suppose that vit is MA (q) in the 

1. In this paper we represent this type of matrix by Zi = diag (yil, . Yis), (s = 1 ... i T-2). 
2. An alternative choice of AN is (N- 1 

ZfAlZi)-l with 
A 

= N-1 S The resulting estimator does 
not depend on the data fourth-order moments and is asymptotically equivalent to '2 provided the vi, are serially 
independent. Note that in this case E(Z!ti3ivZi) = E(Z!fliZi) and limN o0 N-1 , E[Z!(fli -fN)Zi] = O (see 
White (1982), p. 492). 
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sense that E(vivi(,_k)) $ O for k _ q and zero otherwise. In this case a is just identified 
with T = q + 3 and there are mq T - q - 2)( T - q - 1)/2 restrictions available. 

Models with exogenous variables 

We now turn to consider an extended version of equation (1) where (k -1) independent 
explanatory variables have been included 

Yit = ayi(t,l)+ xU* + 'qi + Vit = 8'xi, + 7Ri + vi, (5) 

where xit = (Yi(t-1) x*')' is k x 1 and the vit are not serially correlated. Suppose initially 
that the x* are all correlated with qi. In this context the form of the optimal matrix of 
instruments depends on whether the x* are predetermined or strictly exogenous variables. 
If the x* are predetermined, in the sense that E(xi*vis) $ 0 for s < t and zero otherwise, 
then only x*, ... , x*4s-1) are valid instruments in the differenced equation for period s 
so that the optimal Zi is a (T-2)x(T-2)[(k-1)(T+1)+(T-1)]/2 matrix of the form 
Zi = diag (yi, ... yisx*l ... x*( +1)), (s = 1, . . ., T - 2). On the other hand, if the x* are 
strictly exogenous, i.e. E(x viis) = 0 for all t, s, then all the x*'s are valid instruments for 
all the equations and Zi takes the form Zi = diag (yi, * yis x*x' * X** ), (s = 1,..., T- 2). 
Clearly, x* may also include a combination of both predetermined and strictly exogenous 
variables. In either case, the form of the GMM estimator of the k x 1 coefficient vector 
8 is 

= (X'ZANZ'X) X'ZANZ'y (6) 

where X is a stacked (T -2) N x k matrix of observations on xit, and y and Z are as 
above for the appropriate choice of Zi. As before, alternative choices of AN will produce 
one-step or two-step estimators.3 

Turning now to the case where x* can be partitioned into (x*t,x*x,) and x*, is 
uncorrelated with qi, additional moment restrictions exploiting this lack of correlation 
in the levels equations become available. For example, if x*, is predetermined and letting 
uit = qi + vi,, we have T extra restrictions. Namely, E(ui2XIi4) = 0 and E (ui,xI,i) = 0, (t = 

2,..., T). Note that all remaining restrictions from the levels equations are redundant 
given those previously exploited for the equations in first differences. Define ui = 

(Ui2 . 
. UiTY), let v+ be the [(T-2)+(T-1)]xl vector v+=(i3u')' and let v+= 

(V1+' ... v+' Y+ - X+8. The optimal matrix of instruments Z+ is block diagonal and 
consists of two blocks: Zi which is as in the predetermined x* case above (assuming that 
x* t is also predetermined), and Za which is itself block diagonal with (x*lx*42) in the 
first block and x*' , s = 3, .. ., T in the remaining blocks. The two-step estimator is of 
the same form as (6) with X+, y+ and Z+ replacing X, y and Z respectively, and 
AN = [N-1 Eji Z+A+A+t'ZP+]-. On the other hand, if x4*t is strictly exogenous, the observa- 
tions for all periods become valid instruments in the levels equations. However, given 
those previously exploited in first differences we only have T extra restrictions which in 
this case can be conveniently expressed as E(T-1 ,i=1 uisxit) = 0 (t= 1,..., T). Thus, 
the two-step estimator would just combine the ( T- 1) first difference equations and the 
average level equation.4 

3. Note that if E(vjvt) is unrestricted (i.e. vi, is MA(q) with T< q+3) but x* is strictly exogenous, the 
model is identified with Z, = diag (* ... * *x), (s = 1, . . ., T- 2), in which case the two-step estimator coincides 
with the generalized three-stage least squares estimator proposed by Chamberlain (1984). 

4. Note that when x*, variables are available it may be possible to identify and estimate coefficients for 
time-invariant variables on the lines suggested by Hausman and Taylor (1981), Bhargava and Sargan (1983) 
and Amemiya and MaCurdy (1986). 
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Models from unbalanced panel data 

By unbalanced panel data we refer to a sample in which consecutive observations on 
individual units are available, but the number of time periods available may vary from 
unit to unit as well as the historical points to which the observations correspond. This 
type of sample is very common particularly with firm data which is the context of the 
application reported below. Aside from often allowing one to exploit a much larger 
sample or to pool more than one panel, the use of unbalanced panels may lessen the 
impact of self selection of firms in the sample. In fact nothing fundamental changes in 
the econometric methods provided a minimal number of continuous time periods are 
available on each unit, and one assumes that if period-specific parameters are present 
the number of observations on these periods tend to infinity. Of course, the essential 
assumption is that the observations in the initial cross-section are independently dis- 
tributed and that subsequent additions and deletions take place at random (see Hsiao (1986), 
Chapter 8). 

The previous notation can accommodate unbalanced panels with minor changes. 
We now have Ti time-series observations on the ith unit, and there are N individual 
units in the sample. The matrices X and Z, and the vectors y- and v are made of N 
row-blocks, the ith block containing (Ti - 2) rows. Note that now the number of non-zero 
columns in each Zi may vary across units. For example, in the first-order autoregressive 
specification above, the number of columns in Zi is p = (-r - 2)(-r - 1)/2 where r is the 
total number of periods on which observations are available for some individuals in the 
sample, and Zi = diag (yi , .. , Yis), (s = 1, . . ., r-2), only if r observations are available 
on i. For individuals with Ti < r, the rows of diag (yi,.... , yis) corresponding to the 
missing equations are deleted and the missing values of Yit in the remaining rows are 
replaced by zeroes. The two-step GMM estimator of a for this choice of instruments: is 
the same as in (3) using AN=(N-'E'Z'ivZiZl)-1 where Zi is (Ti-2)xp and vi is 
(Ti -2) x 1. 

3. TESTING THE SPECIFICATION 

In order to keep the notation simple we now drop the bars from variables in first differences, 
so that the first-difference equation for the unbalanced panel is now 

y=X 8+ v (7) 
nxl nxk kxl nxl 

where n = i (Ti -2). We also assume that the x* are all potentially correlated with m1i. 
The n x 1 vector of residuals is given by 

A=y-X8= v-X(8-8) 

where 8 can be any estimator of the form (6) for a particular choice of Z and AN. Let 
v2 be the vector of residuals lagged twice, of order q = i (1Ti - 4) and let v* be a q x 1 
vector of trimmed v to match v-2 and similarly for X*. Since the vit are first differences 
of serially uncorrelated errors, E(vitvi(t-l)) need not be zero, but the consistency of the 
GMM estimators above hinges heavily upon the assumption that E(vitvi(t-2)) =0. In an 

5. This is the optimal choice amongst the estimators that can be obtained by stacking the equations for 
all periods and individuals. An alternative estimator would minimize the sum of the GMM criteria for each of 
the balanced sub-panels in the sample. Although the latter is strictly more efficient when the number of units 
in all sub-samples tend to infinity, it may have a poorer finite-sample performance when the various sub-sample 
sizes are not sufficiently large. 
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unbalanced panel (r-4) such covariances can be estimated in total, in principle with 
varying number of sample observations to estimate each of the covariances. Provided 
one assumes that all sub-samples tend to infinity, a (r-4) degrees of freedom test can 
be constructed of the hypothesis that the second-order autocovariances for all periods in 
the sample are zero. However, a considerably simpler procedure will look at the average 
covariances Xi - (2)V These averages are independent random variables across units 
with zero mean under the null although with unequal variances in general. So a straight- 
forward one degree of freedom test statistic can be constructed to test whether E(4i) is 
zero or not. 

The test statistic for second-order serial correlation based on residuals from the 
first-difference equation takes the form 

M2 '-A1/2* dI N(0, 1) (8) 
V 

under E(vitvi(t-2)) =0, where v is given by 

V = Z,1-1 V 2) Vi* V* V'i(-2)- 2 '2X*(X'ZANZXY)XPZAN(N Zviv i*Vi(-2)) 

+ v' 2X avar (8)X *V2. (9) 

Note that m2 is only defined if min Ti-' 5. A proof of the asymptotic normality result is 
sketched in the Appendix. 

It is interesting to notice that the m2 criterion is rather flexible, in that it can be 
defined in terms of any consistent GMM estimator, not necessarily in terms of efficient 
estimators, either in the sense of using optimal Z or AN or both. However, the asymptotic 
power of the m2 test will depend on the efficiency of the estimators used. 

The m2 statistic tests for lack of second-order serial correlation in the first-difference 
residuals. This will certainly be the case if the errors in the model in levels are not serially 
correlated, but also if the errors in levels follow a random-walk process. One may attempt 
to discriminate between the two situations by calculating an ml statistic, on the same 
lines as M2, to test for lack of first-order serial correlation in the differenced residuals. 
Alternatively, notice that if the errors in levels follow a random walk, then both OLS and 
GMM estimates in the first-difference model are consistent which suggests a Hausman 
test based on the difference between the two estimators. 

We now turn to consider two other tests of specification which are applicable in the 
same context. One is a Sargan test of over-identifying restrictions (cf. Sargan (1958, 
1988), Hansen (1982)) given by 

SV =Z(Zl1 ZiviZZi) YZVa Xp-k (10) 

where v = y - X8, and 8 is a two-step estimator of 8 for a given Z. Notice that Z need 
not be the optimal set of instruments; here p just refers to the number of columns in Z 
provided p > k. Also notice that while we are able to produce a version of the serial 
correlation test based upon a one-step estimator of 8 which remained asymptotically 
normal on the null under the more general distributional assumptions, no robust chi-square 
Sargan test based on one-step estimates is available. Under the null a statistic of the form 

l=A2V Z(E-I ZHiHZi)- Z =V 

where v- are one-step residuals, will only have a limiting chi-square distribution if the 
errors are indeed i.i.d. over time and individuals. In general, the asymptotic distribution 
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of s1 is a quadratic form in standard normal variables. Critical values can still be calculated 
by numerical integration but this clearly leads to a burdensome test procedure. 

On the other hand, there may be circumstances where the serial correlation test is 
not defined while the Sargan test can still be computed. As a simple example, take the 
first-order autoregressive equation at the beginning of Section 2 with T= 4; in this case 
the Sargan statistic tests two linear combinations of the three moment restrictions available, 
namely E(1Ui3yi1) = E(lbi4yi1) = E(ti4yi2) = 0, but no differenced residuals two periods apart 
are available to construct an m2 test. 

A further possibility is to use Sargan difference tests to discriminate between nested 
hypotheses concerning serial correlation in a sequential way. For example, let Z, be a 
n x p, matrix containing the columns of Z which remain valid instrumental variables 
when the errors in levels are first-order moving average, and let 8, be a two-step estimator 
of 8 based on Z, with associated residuals v^, then 

S1 = VI Z,(-1 I viiIi IV I a -k 

if the errors in levels are MA (0) or MA (1). In addition 

ds= s-_SIaX'2-P0 1l) 

if the errors in levels are not serially correlated. Moreover ds is asymptotically independent 
of s, (see Appendix). 

A closely related alternative is to construct a Hausman test based on the difference 
(8, -8) (cf. Hausman (1978) and Hausman and Taylor (1981)). This type of test has 
been proposed by Griliches and Hausman (1986) in the context of moving-average 
measurement errors. A test is based on the statistic 

h = , (? - )'[av'r (?SI) - ava'r (3)]-(?s - ?) a x2(12) 
A A 

where r = rank avar (3, -8) and ( ) indicates a generalized inverse. The value of r will 
depend on the number of columns of X which are maintained to be strictly exogenous. 
In particular, if the only non-exogenous variable is the lagged dependent variable then 
r=1. 

4. EXPERIMENTAL EVIDENCE 

A limited simulation was carried out to study the performance of the estimation and 
testing procedures discussed above in samples of a size likely to be encountered in practice. 
In all the experiments the dependent variable yi, was generated from a model of the form 

Yit = aYi(,-I) + oxit ,q7i+ vi, (i = 19 ... ., N; t = 1, ... ., T+ 10) 

Vit = 07it(eit + 4ei(t-)), it = 00+ 1Xit (13) 

where q, i i.i.d. N(O, o-2 ), {it - i.i.d. N(0, 1) and yio = 0. The first ten cross-sections were 
discarded so that the actual samples contain NT observations. 

With regard to xi,, we considered the following generating equation 

xit = pxi(,-,) + 6it (14) 

with Eit -i.i.d. N(O, (J2) independent of qi and vi, for all t, s and kept the observations 
on xi, fixed over replications. As an alternative choice of regressors we used total sales 
from a sample of quoted U.K. firms where large variations across units and outliers are 
likely to be present. In both cases, xi, is strictly exogenous and uncorrelated with the 
individual effects. However, since we are interested in the performance of estimators that 
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rely on lags of yi, for the identification of a and ,3, the over-identifying restrictions arising 
from the strict exogeneity of xi, and the lack of correlation with -qi were not used in the 
simulated GMM estimator. Thus, we chose6 

Zi - [diag (yi, .. **Yis) *C (X3 ** iTY ] (S = 1I. . T-2) 

which is a valid instrument set provided 4? =0. 
In the base design, the sample size is N = 100 and T =7, the vi, are independent 

over time and homoskedastic: 0, =4? = 0, 00 = a.2 = 1 (o2 = 1, / = 1, p = 0-8 and or2 = 0-9. 
Tables 1 and 2 summarize the results for a = 0-2, 0 5, 0 8 obtained from 100 replications. 
Results for other variants of this design were calculated (N = 200, T =6, r.2=2, 5, 

2 = 0, p = 0], and are available from the authors on request. However the conclusions 
are the same as for the results reported here. 

Table 1 reports sample means and standard deviations for one-step and two-step 
GMM estimators (GMM1 and GMM2 respectively), OLS in levels, within-groups, and 

TABLE 1 

Biases in the estimates 

Robust 
Within- One-step One-step Two-step 

GMM1 GMM2 OLS groups AHd AHI ASE ASE ASE 

a = 0 5, , = 1 
Coefficient: a 

Mean 0-4884 0-4920 0-7216 0 3954 -2-4753 0 5075 0-0683 0-0677 0-0604 
St. Dev. 0-0671 0 0739 0-0216 0-0272 45-9859 0-0821 0-0096 0-0120 0-0106 

Coefficient: ,3 
Mean 1-0053 0-9976 0-7002 1-0409 0-1625 0-9996 0-0612 0-0607 0-0548 
St. Dev. 0-0631 0-0668 0-0484 0-0480 9-8406 0-0650 0-0031 0-0055 0-0052 

a = 0-2, ,3= 1 
Coefficient: a 

Mean 0-1937 0d1979 0-5108 0-0957 0-2025 0-2044 0-0610 0-0602 0-0533 
St. Dev. 0 0597 0-0670 0 0340 0 0309 0-1973 0-0661 0 0045 0-0066 0-0060 

Coefficient: /8 
Mean 1-0048 0-9960 0 7030 1-0430 0-9973 0-9991 0-0620 0-0615 0-0553 
St. Dev. 0-0630 0-0687 0-0526 0-0476 0-0818 0-0654 0-0028 0-0058 0-0052 

a =0-8,/3 = 1 
Coefficient: a 

Mean 0-7827 0-7810 0-8997 0-7160 0-8103 0-8038 0-0529 0-0527 0 0470 
St. Dev. 0-0582 0-0609 0 0090 0-0206 0-1313 0-2677 0-0069 0-0082 0 0075 

Coefficient: ,3 
Mean 1-0001 0-9926 0-7754 1-0137 1-0000 0-9980 0-0609 0-0601 0-0544 
St. Dev. 0-0622 0-0671 0-0423 0-0461 0-0789 0-0893 0 0035 0-0056 0-0056 

Notes. 
(i) N = 100, T= 7, 100 replications, o-2= a2 1. 

(ii) Exogenous variable is first order autoregressive with p = 0-8 and or = 0 9. 
(iii) GMMI and GMM2 are respectively one step and two step difference-IV estimators of the type described 

in Section 2. Both GMM use Z, = [diag (y,, ... Yi) (Xj3 * * * ,T)'] (S = 1, . * *, T-2). 
(iv) AHd and AHl are the Anderson-Hsiao stacked-IV estimators of the equation in first differences that use 

AYi(,-2) and Yi(t-2) as an instrument for Ayi(,-1) respectively. 
(v) One Step ASE and Robust One Step ASE are estimates of the asymptotic standard errors of GMM1. The 

former are only valid for i.i.d. errors while the latter are robust to general heteroskedasticity over individuals 
and over time. Two step ASE is a robust estimate of the asymptotic standard errors of GMM2. 

6. The optimal instrument set for the system of first difference equations would be zi= 
diag (yi, *.* Yis, Xi , - -, XiT)- 
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two AH estimators. The AHd estimator is given by 

( ^) = (i Et=4 AZitw I)t t 4 AZit Ayit (15) 

where wi = (yi(t_1), xit)' and zi, = (yi(t-2), xi,)'. The AHI estimator replaces Azi, with 
(yi(t-2), Axit)' and the summation goes from t =3 to T The next two columns report 
sample means and standard deviations for two alternative estimates of the asymptotic 
standard errors of the one step GMM estimator. The first one is only valid for i.i.d. errors 
while the second is robust to heteroskedasticity of arbitrary form. The last column 
corresponds to estimates of the asymptotic standard errors of the two-step GMM estimator. 

The tabulated results show a small downward finite-sample bias in the GMM 
estimators of a (of about 2 to 3%). Not surprisingly, the OLS and the within-group 
(WG) estimators of a exhibit large biases in opposite directions (i.e. upward bias in OLS 
whose size depends on (J2; downward bias in WG whose size depends on T). The 
behaviour of the AH estimators is more surprising. Concerning AHd, there is evidence 
of lack of identification for a = 05 and negligible biases, though coupled with large 
variances, for a-= 0-2 and 0-8. On the other hand, the standard deviation of AHl is small 
for a = 0-2 and a = 0 5 but it more than doubles that of AHd for a = 0-8. These results 
are consistent with the calculations of asymptotic variance matrices for the AH estimators 
reported elsewhere (cf. Arellano (1989)). As explained in that note, in a model containing 
an exogenous variable in addition to the lagged dependent variable, there are values of 
a and p between 0 and 1 for which there is no correlation between AYi(,t-) and AYi(,-2), 
in which case AYi(t-2) is not a valid instrument and AHd is not identified. In our first 
experiment, AHd is close to such a singularity which explains the result. In contrast, 
AHl has no singularities for stationary values of a and p but can nevertheless be even 
less precise than AHd for large values of a. 

An interesting result is that the standard deviation of the GMM estimators of a is 
about three times smaller than that of AHd for a = 0-2 and 0-8 and between four and 
five times smaller than that of AHl for a = 0-8 (although the standard deviation of AHl 
for a = 0-2 and a =0 -5 is of a similar magnitude as for the GMM estimators). This 
suggests that there may be significant efficiency gains in practice by using GMM as 
opposed to AH, aside from overcoming potential singularities as in our first experiment. 

Concerning GMM 1, the two alternative estimators of their asymptotic standard errors 
behave in a similar way, although the robust alternatives always have a bigger standard 
deviation. Their sample mean is always very close to the finite-sample standard deviation 
in column one, suggesting that the asymptotic approximation is quite accurate for the 
simulated designs. On the other hand, the estimator of the asymptotic standard errors 
of GMM2 in the last column shows a downward bias of around 20 percent relative to 
the finite-sample standard deviations reported in the second column. 

Table 2 reports the number of rejections together with sample means and variances 
for the test statistics discussed in Section 3. The first three columns contain two alternative 
versions of the one step m2 statistic and the two step m2 statistic (see the notes to the 
table). The Sargan tests are tests of the over-identifying restrictions based on minimized 
criteria of the GMM estimators of Table 1. The difference-Sargan tests are based on the 
difference between the minimized GMM criteria and the restricted versions of these that 
remain valid when the errors are MA (1). The Hausman statistics test the distance between 
the GMM and the restricted GMM estimates of a. 

With only 100 replications we cannot hope to provide accurate estimates of the tail 
probabilities associated with the test statistics; our results can only be suggestive. The 
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TABLE 
2 

Sizes 
of 
the 

Test 

Statistics, 

Number 
of 

rejections 

out 
of 

100 

cases 

One-step 

Two-step 

Robust 

One-step 

Two-step 

difference- 

difference- 

One-step 

Two-step 

One-step 

one-step 

Two-step 

Sargan 

Sargan 

Sargan 

Sargan 

Hausman 

Hausman 

M2 

M2 

M2 

(df= 

14) 

(df= 

14) 

(df= 
5) 

(df= 
5) 

(df= 
1) 

(df= 
1) 

a=0-5 

10 

12 

15 

14 

11 

7 

13 

12 

13 

20 

5 

5 

5 

6 

6 

4 

6 

6 

9 

12 

1 

1 

1 

1 

0 

0 

0 

2 

2 

3 

Mean 

0-013 

0-003 

0-002 

13-622 

13-844 

5-195 

5-209 

1-135 

1-487 

Variance 

1-049 

1-071 

1-063 

28-004 

23-092 

10-889 

10-788 

3-547 

4-693 

a 
= 

0-2 

10 

12 

13 

13 

8 

6 

12 

9 

11 

17 

5 

4 

5 

4 

4 

3 

8 

6 

7 

13 

1 

2 

1 

1 

0 

0 

1 

1 

2 

3 

Mean 

-0-002 

-0-010 

-0-018 

13-519 

13-691 

5 

043 

5 

004 

1-047 

1-528 

Variance 

1-127 

1-146 

1-124 

24-471 

22-092 

10-928 

10-806 

2-612 

5 

003 

a 
= 

0-8 

10 

12 

15 

15 

9 

10 

7 

12 

11 

12 

5 

5 

6 

6 

7 

4 

4 

9 

5 

8 

1 

1 

0 

0 

1 

2 

1 

2 

0 

4 

Mean 

0 

047 

0 

037 

0-036 

13-423 

13-883 

4-917 

5-199 

0-928 

1-239 

Variance 

1-004 

1-029 

1-028 

31-492 

28-854 

8-916 

11-333 

1-648 

4-325 

Notes. 
(i) 

N 
= 

100, 
T 
= 
7, 

100 

replications, 

U2 
= 

U= 
1 

p 
= 

1. 

(ii) 

Exogenous 

variable 
is 

first 

order 

autoregressive 

with 
p 
= 

0-8 

and 
o2 
= 

09- 

(iii) 

All 

tests 

are 

based 
on 

the 

one- 

and 

two-step 

GMM 

estimates 

reported 
in 

Table 
1 
as 

well 
as 
on 

restricted 

versions 
of 

those 

which 

only 

use 

the 

columns 

of 
Zi 

that 

remain 

valid 

instruments 

when 

the 

errors 

are 

MA 

(1). 

The 

one-step 

m2 

statistic 
is 

described 
in 

the 

Appendix. 

(iv) 

Results 

on 
an 

extended 

set 
of 

experiments 

are 

available 

from 

the 

authors 

on 

request. 
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TABLE 
3 

Power 
of 
the 

Test 

Statistics, 

Number 
of 

rejections 

out 
of 

100 

cases 

One-step 

Two-step 

Robust 

One-step 

Two-step 

difference- 

difference- 

One-step 

Two-step 

One-step 

one-step 

Two-step 

Sargan 

Sargan 

Sargan 

Sargan 

Hausman 

Hausman 

M2 

M2 

M2 

(df= 

14) 

(df= 

14) 

(df= 
5) 

(df= 
5) 

(df= 
1) 

(df= 
1) 

Serial 

correlation: 

Corr 

(v,v,1) 
= 
0 
2 

10 

54 

53 

53 

47 

33 

60 

46 

27 

25 

5 

45 

46 

46 

33 

20 

53 

34 

15 

20 

1 

24 

25 

25 

22 

2 

29 

9 

8 

11 

Mean 

-1-833 

-1-823 

-1-823 

20-673 

17-988 

11-307 

9-151 

2-076 

2-431 

Variance 

1-079 

0-987 

0-988 

70-881 

34-447 

40-017 

20-773 

8-855 

12-496 

Serial 

correlation: 

Corr 

(v,v,l) 
= 

0 
3 

10 

95 

96 

96 

78 

71 

91 

86 

29 

33 

5 

91 

92 

92 

72 

47 

86 

70 

20 

22 

1 

78 

77 

78 

57 

30 

69 

51 

11 

11 

Mean 

-3-293 

-3-118 

-3-121 

32-057 

24-180 

22-112 

15*314 

2-537 

2-707 

Variance 

1-033 

0-695 

0 

705 

135-543 

40-127 

94-261 

30 

339 

12-430 

13-640 

Heteroskedasticity: 

Var 

(vi,) 

=xi, , 
Xit 

AR 
(1) 

data 

10 

23 

9 

10 

43 

8 

35 

7 

24 

25 

5 

15 

2 

2 

35 

0 

24 

4 

16 

16 

1 

3 

0 

0 

13 

0 

15 

0 

8 

5 

Mean 

0-029 

-0-023 

-0-038 

20-967 

14-495 

9 

104 

5-216 

2-158 

1-938 

Variance 

1-708 

1-005 

0-991 

70 

077 

17-194 

36-410 

8-737 

13-954 

6-355 

Heteroskedasticity: 

Var 

(Vi,) 
= 

xi,, 
: 

U.K. 

Sales 

10 

71 

6 

7 

100 

0 

93 

13 

74 

81 

5 

68 

3 

2 

100 

0 

92 

3 

69 

76 

1 

54 

0 

0 

100 

0 

88 

1 

62 

72 

Mean 

-0-870 

-0-225 

-0-301 

207-789 

14-940 

63-389 

5*611 

43-241 

154-452 

Variance 

15-022 

1-126 

1-014 

5863-623 

5 

405 

2659-712 

9 

095 

12059*642 

339856*703 

Notes. 
(i) 

N 
= 

100, 
T 

7, 

100 

replications, 
a 
= 
0 
5, 
/3 
= 

1, 
o2 
= 

0. 

(ii) 

In 

the 

serial 

correlation 

designs 
vi, 

has 

been 

generated 
as 

MA 
(1) 

with 

standard 

normal 

random 

errors. 

(iii) 

In 

the 

first 

three 

designs 
xi, 
is 

AR 
(1) 

with 
p 
= 

0-8 

and 
T. 
= 

09. 

(iv) 

In 

the 

fourth 

design, 
xi, 

are 

total 

sales 

from 
a 

sample 
of 

quoted 

U.K. 

companies 

scaled 
to 

have 

Var 

(Axi,) 
= 
1. 

x,, 

behaves 
as 
a 

random 

walk 

process 

with 

large 

differences 
in 

mean 

and 

variance 

across 

firms. 

(v) 

In 

the 

heteroskedastic 

designs 

there 
is 
no 

serial 

correlation 
in 

the 

vi,. 
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robust m2 statistics, which depend on the fourth-order moments of the data, both tend 
to reject too often at the 10% level, suggesting that they have a slower convergence to 
normality by comparison with the other test, but they are still to be recommended when 
heteroskedasticity is suspected. Overall all three m2 tests seem to be quite well approxi- 
mated by their asymptotic distributions under the null, with no obvious indications of 
the need for systematic finite-sample size corrections. The same is true for the Sargan, 
difference-Sargan and one step Hausman tests. However, the two-step Hausman statistic 
appears to over-reject consistently in these experiments. 

Table 3 repeats the exercise for two models with MA (1) serial correlation (4 = 0209 
and 0.333) and two other experiments with heteroskedastic errors. The m2 statistic will 
reject the null more than half the time at the 10 per cent level when the correlation 
between vi, and vi(,-i) is only 02. However when the autocorrelation rises to 03, the 
null will be rejected in 95% of cases. The Hausman test has considerably less power than 
the difference-Sargan test or the m2 statistics, and with increasing autocorrelation the 
difference in power becomes wider. 

The last two panels of Table 3 investigate the effects of departures from homoskedas- 
ticity of the error distribution on the probabilities of rejection of the tests. Both experiments 
have 00= 0 and 01 = 1. In the first, the xi, are generated AR (1) data as in the previous 
experiments, while in the second the xi, are U.K. sales data. This has a dramatic effect 
on the one-step tests which are not robust to heteroskedasticity. On the other hand, the 
robust m2 statistics and the two-step difference-Sargan test show no serious departures 
from their nominal size. The two-step Sargan test tends to under-reject and the two-step 
Hausman test over-rejects, especially in the last experiment where the variance of xi, is 
much greater. We suspect that the two-step Hausman statistic is very sensitive to the 
presence of outliers. 

5. AN APPLICATION TO EMPLOYMENT EQUATIONS 

In this section we apply the strategy for estimation and testing outlined earlier to a model 
of employment, using panel data for a sample of U.K. companies. We consider a dynamic 
employment equation of the form 

nit = a, ni(t-l) + a2ni(t-2) + i'(L)xit + At + qi + vit. (16) 

Here ni, is the logarithm of U.K. employment in company i at the end of year t,7 the 
vector xi, contains a set of explanatory variables and 13(L) is a vector of polynomials in 
the lag operator. The specification also contains a time effect At that is common to all 
companies,8 a permanent but unobservable firm-specific effect 'qi and an error term vi,. 

Equation (16) will admit more than one theoretical interpretation. Suppose first that, 
in the absence of adjustment costs, a price-setting firm facing a constant elasticity demand 
curve would choose to set employment according to a log-linear labour demand equation 
(see, for example, Layard and Nickell (1986)) 

n* = hyo+ Yl wi, + 7k + Ce, + 7(17) 

where YI < 0, Y2 > 0 and -Y3 ?0. Here wi, is the log of the real product wage, kit is the log 

7. Note that the time period is taken to be the 12-month period covered in the company's accounts 
("accounting year") and so differs across companies in the sample. 

8. These time effects relate to calendar years and a company's accounting year is allocated to the calendar 
year in which it ends. 
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of gross -capital, a'e is a measure of expected demand for the firm's product relative to 
potential output, and the intercept may contain a firm-specific component q' . If employ- 
ment adjustment is costly then actual employment will deviate from n* in the short run. 
This suggests a dynamic labour demand model of the form of (16), where xit contains 
k-, w, and o2,2 and unrestricted lag structures are included to model this sluggish 
adjustment. We include the log of industry output (ysi,) to capture industry demand 
shocks, and aggregate demand shocks are also included through the time dummies. The 
resulting employment equation is a skeleton version of those estimated on U.K. time 
series data by Layard and Nickell (1986) and on micro data by Nickell and Wadhwani 
(1989). The short-run dynamics will compound influences from adjustment costs, expecta- 
tions formation and decision processes. 

Alternatively, if adjustment costs take the standard additively-separable quadratic 
form (1/2a)(Ni, - Ni(t_l))2, where Nit denotes the level rather than the logarithm of 
company employment, then Dolado (1987), following Nickell (1984), derives a log-linear 
approximation to the Euler equation for a firm maximising the present discounted value 
of profits as 

E1.l(nit) = 80+ (2+ r)ni(t,l)-(1 + r)ni(t-2)+ a(1 + r)[n(1l) - ni(t,l)]. (18) 

Here r is a real discount rate, assumed constant, and n* is given by (17). Replacing the 
conditional expectation by its realisation and introducing an expectational error vit yields 
a model with the form of (16), though with strong restrictions on the dynamic structure 
in this case. In particular the rational expectations hypothesis suggests a theoretical 
motivation for the assumption of serially-uncorrelated errors in this kind of model. 

The principal data source used is the published accounts of 140 quoted companies 
whose main activity is manufacturing and for which we have seven or more continuous 
observations during the period 1976-1984. The panel is unbalanced both in the sense 
that we have more observations on some firms than on others, and because these 
observations correspond to different points in historical time. We allocate each of our 
companies to one of nine broad sub-sectors of manufacturing according to their main 
product by sales, and use value-added in that sector as our measure of industry output. 
Our wage variable is a measure of average remuneration per employee in the company, 
which we deflate using a value-added price deflator at the industry level. Finally we use 
an inflation-adjusted estimate of the company's gross capital stock. More information 
about the sample and the construction of these variables is provided in the Data Appendix. 

In Table 4 we report GMM estimates of these dynamic employment equations.9 We 
begin by including current-dated variables and unrestricted lag structures. Columns (al) 
and (a2) present the one-step and two-step results respectively for the most general 
dynamic specification that we considered. Three cross-sections are lost in constructing 
lags and taking first differences, so that the estimation period is 1979-1984, with 611 
useable observations. Here all variables other than the lagged dependent variables are 
assumed to be strictly exogenous, although none of the over-identifying restrictions that 
follow from this assumption are exploited. 

Comparing columns (al) and (a2) shows that the estimated coefficients are quite 
similar in all cases. Both models are well determined and have sensible long-run properties 
for a labour demand equation. However the asymptotic standard errors associated with 
the two-step estimates are generally around 30% lower than those associated with the 

9. Estimation was performed using the DPD program written in GAUSS, described in Arellano and Bond 
(1988a) and available from the authors on request. 
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TABLE 4 
Employment equations 

GMM estimates (all variables in first differences) 

Dependent variable: In (Employment)i, Sample Period: 1979-1984 (140 companies) 

Independent Instrumenting wages and capital* 
variables (al) (a2) (b) (c) (d) 

ni(,_l) 0-686 (0 145) 0-629 (0 090) 0-474 (0 085) 0-800 (0.048) 0-825 (0.056) 
ni(t-2) -00085 (0 056) -0-065 (0 027) -0-053 (0-027) -0-116 (0-021) -0 074 (0.020) 
Wit -0*608 (0-178) -0-526 (0-054) -0-513 (0*049) -0-640 (0.054) 
wi(t-1) 0*393 (0-168) 0 311 (0-094) 0-225 (0 080) 0*564 (0-066) 0-431 (0.076) 
ki, 0*357 (0.059) 0-278 (0.045) 0-293 (0 039) 0-220 (0-051) 
k,(,_l) -0 058 (0*073) 0-014 (0 053) -0-077 (0 045) 
ki(t-2) -0-020 (0-033) -0-040 (0.026) 
ysi, 0*608 (0.172) 0-592 (0-116) 0-610 (0 109) 0-890 (0 098) 
ysi(t-1) -0 711 (0.232) -0-566 (0-140) -0-446 (0-125) -0-875 (0-105) -0-115(0-100) 
YSi(t-2) 0-106 (0 141) 0-101 (0-113) 0-096 (0 092) 

M2 -0-516 -0 434 -0-327 -0 610 -1-259 
Sargan test 65.8 (25) 31 4(25) 30-1 (25) 63-0(50) 68-3 (51) 
Difference-Sargan 41-9 (6) 15-4 (6) 10-0 (6) 28-6 (20) 31-6 (20) 
Hausman 5-8 (1) 14-4 (1) 13-4 (1) 2-0 (1) 2-9 (1) 
Wald test 408-3 (10) 667-0 (10) 372-0 (7) 779-3 (7) 623-9 (6) 
No. of observations 611 611 611 611 611 

* A subset of valid moment restrictions involving lagged wages and capital are exploited-see note (vi). 
Additional instruments used are the stacked levels and first differences of (firm real sales)(,-2) and (firm real 
stocks)(t-2) 
Notes 

(i) Time dummies are included in all equations. 
(ii) Asymptotic standard errors robust to general cross-section and time series heteroskedasticity are reported 

in parentheses. 
(iii) The GMM estimates reported are all two step except column (al). 
(iv) The M2, Sargan, difference-Sargan and Hausman statistics are all two step versions of these tests except 

in column (al). In column (al) the m2 and Hausman statistics are asymptotically robust to general 
heteroskedasticity, whilst the Sargan and difference-Sargan tests are only valid in the case of i.i.d. errors. 
All Hausman statistics test only the coefficient on ni(,t-). Degrees of freedom for x2 statistics are reported 
in parentheses. 

(v) The Wald statistic is a test of the joint significance of the independent variables asymptotically distributed 
as X2 under the null of no relationship, where k is the number of coefficients estimated (excluding time 
dummies). 

(vi) The basic instrument set used in columns (al), (a2) and (b) is of the form 

nil ni2 0 0 0 ... O ... O *&Xlj4] 1979 

l 0 nil ni2 ni3 0 0 AX* 15 1980 

ZiI . 

0 0 0 0 O *-- nil ... n7 . &x'9] 1984 

where x-, is the vector of exogenous variables included in the equation. For example, the equation for 
1979 in first differences can be written as 

An,4 = :alAni3 + a2Ani2 + Ax'14f3 + Avi4 

For companies on which less than 9 observations are available, the rows of Z; corresponding to the missing 
equations are deleted and the missing values of n in the remaining rows are replaced by zeroes. 

In columns (c) and (d) Zi is modified to take the form 

Zi= [diag (ni I .. niswi(s_l)Wski(sl)kis): (Ax'14 ... Axi9)'] (s = 2,..., 7) 

where xi, is now the vector of explanatory variables excluding wages and capital but including stacked 
lagged sales and stocks. 
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one-step estimates, with the discrepancy being even larger in some cases. We suspect 
that most of this apparent gain in precision may reflect a downward finite-sample bias 
in the estimates of the two-step standard errors as indicated by the simulation results in 
Table 1, suggesting that caution would be advisable in making inferences based on the 
two-step estimator alone in samples of this size. 

Turning to the test statistics, neither of the robust m2 statistics nor the two-step 
Sargan test provide evidence to suggest that the assumption of serially uncorrelated errors 
is inappropriate in this example. The one-step Sargan and difference-Sargan statistics do 
reject the overidentifying restrictions but our simulation results showed a strong tendency 
for those tests to reject too often in the presence of heteroskedasticity. The two-step 
difference-Sargan test is more marginal but does reject at the 5 per cent significance level. 
Both Hausman tests also reject but these too show a tendency to over-reject in our 
simulation experiments. One possibility is that this instability across different instrument 
sets reflects the failure of the strict exogeneity assumption for wages and capital, rather 
than serial correlation per se. 

In Table 5 we present some alternative estimates of this same model for comparison. 
Columns (e) and (f) report two instrumental variable estimates of the differenced equation 
using simpler instrument sets of the AH type. In column (e) we use the difference Ani(t-3) 

to instrument Ani(t_1), losing one further cross-section, whilst in column (f) we use the 
level ni(t-3) as the instrument. In both cases the coefficient estimates are poorly determined, 
indicating a massive loss in efficiency compared to either GMM estimator in this applica- 
tion. Using both Afni(t3) and ni(t-3) as instruments (not reported) helped a little, but the 
estimates remained very imprecise. In column (g) we report OLS estimates of the 
employment equation in levels. In this case the 1978 cross-section is available and the 
longer estimation period has been used here. Compared to the GMM estimates there is 
a serious upward bias on the lagged dependent variable, which suggests the presence of 
firm-specific effects. Column (h) reports the within-groups estimates, which are close to 
GMM in this example. In fact the WG estimate of the first-order autoregressive coefficient 
is bigger than the corresponding GMM estimates, although the comparison between WG 
and GMM in this case is obscured by the likely endogeneity of wages and capital. 

Returning to the GMM estimates in Table 4, column (b) omits insignificant dynamics 
with little change in the long-run properties of the previous model. In columns (b)-(d) 
we report only the two-step estimates though the one-step coefficient estimates were 
invariably similar; In column (b) the two-step difference-Sargan test now marginally 
accepts the hypothesis of no serial correlation, but the two-step Hausman statistic remains 
an outlier. In column (c) we relax the assumption that the real wage and capital stock 
are strictly exogenous and instead treat them as being endogenous. We therefore use 
lags of w and k dated (t -2) and earlier as instruments for wit, wi(t-l) and kit. We also 
use lagged values of the company's real sales and real stocks as additional instruments. 
Given the size of our sample, not all the available moment restrictions were used. The 
precise form of the instrument matrix is described in note (vi) to Table 4. The results in 
column (c) suggest that it is inappropriate to treat wages and capital as strictly exogenous 
in this model. In this case none of the test statistics indicate the presence of mis- 
specification. 

The coefficient estimates for our preferred specification in column (c) suggest a 
long-run wage elasticity of -0-24 (standard error= 0-28) and a long-run elasticity with 
respect to capital of 07 (S.E. = 0-14). There is a strong suggestion that industry output 
enters the model in changes rather than levels, which is appealing since o--' in (17) 
measures demand shocks relative to potential output. Layard and Nickell (1986) interpret 
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TABLE 5 

Employment equations 

Alternative estimates 

Dependent variable: In (Employment)i, 

Independent (e) (f) (g) (h) 
variables AHd AHI OLS Within-groups 

P1423 2-308 1-045 0-734 
(1.001) (1-055) (0*051) (0.058) 

ni(t--2) -0-165 -0-224 -0-077 -0-141 
(0*128) (0-117) (0-048) (0.077) 

Wit -0 752 -0 810 -0-524 -0 557 
(0.230) (0-283) (0-172) (0-155) 

Wi(t,l) 0-963 1-422 0-477 0-326 
(0 768) (0-851) (0-169) (0-143) 

k,, 0-322 0-253 0-343 0-385 
(0-105) (0 110) (0048) (0056) 

-0-325 -0-552 -0-202 -0-084 
(0.386) (0*357) (0064) (0 053) 

ki(t-2) -0 095 -0-213 -0-116 -0-025 
(0-123) (0-145) (0-035) (0.042) 

ysi, 0-766 0991 0433 0-521 
(0-311) (0338) (0-176) (0-193) 

ysi(,_1) -1-362 1-938 -0-768 -0-659 
(0-881) (0.992) (0 248) (0 208) 

YSi(t-2) 0-321 0-487 0 312 0001 
(0-416) (0.425) (0-130) (0-139) 

M2 -0-781 -0-919 -1-029 

Wald test 1993 (10) 101 1 (10) 
R 2 00994 0-689 
Number of observations 471 611 751 751 

Notes. 
(i) Time dummies are included in all equations. 

(ii) Asymptotic standard errors robust to general cross-section and time series heteroskedasticity 
are reported in parentheses. 

(iii) The m2 and Wald tests are asymptotically robust to general heteroskedasticity. 
(iv) Columns (e) and (f) report Anderson-Hsiao-type estimates of the equation in first differences: 

,&n,(,-l) is treated as endogenous and the additional instruments used are An,(,-3) in (e), 
and ni(,-3) in (f), so that one further cross-section is lost in (e) and the effective sample 
period becomes 1980-84. 

(v) Column (g) reports OLS estimates of the equation in levels, where the effective sample period 
becomes 1978-1984. 

(vi) Column (h) reports within-groups estimates. These are OLS estimates of the equation in 
deviations from time means. 

the short-run effect of product demand fluctuations on labour demand as reflecting the 
practice of normal cost pricing. 

Finally in column (d) we report estimates of the Euler equation model given in (18). 
Here again we treat wages and capital as endogenous variables. Although the tests for 
serial correlation remain below their critical values, the coefficient estimates are not 
favourable to the Euler equation interpretation. The coefficients on capital and industry 
output are poorly determined, whilst those on the lagged dependent variable imply a real 
discount rate of around -100%. Very similar results were obtained for versions of the 
Euler equation model allowing for an MA (1) error process and estimating in levels as 
opposed to logs. It appears that the process of employment adjustment is not well 
described by this model. 
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The results of this empirical application are generally in agreement with those of 
our Monte Carlo simulations. The GMM estimator offers significant efficiency gains 
compared to simpler IV alternatives, and produces estimates that are well-determined in 
dynamic panel data models. The tendency for non-robust test statistics to over-reject is 
confirmed. The robust m2 statistics perform satisfactorily as do the two-step Sargan and 
difference-Sargan tests, but the two-step Hausman test must be considered suspect in 
samples of this size. 

6. CONCLUSION 

In this paper we have discussed the estimation of dynamic panel data models by the 
generalized method of moments. The estimators we consider exploit optimally all the 
linear moment restrictions that follow from particular specifications, and are extended 
to cover the case of unbalanced panel data. We focus on models with predetermined but 
not strictly exogenous explanatory variables in which identification results from lack of 
serial correlation in the errors. A test of serial correlation based on the GMM residuals 
is proposed and compared with Sargan tests of over-identifying restrictions and Hausman 
specification tests. 

To study the practical performance of these procedures we performed a Monte Carlo 
simulation for 100 units, seven time-periods and two parameters. The results indicate 
negligible finite sample biases in the GMM estimators and substantially smaller variances 
than those associated with simpler IV estimators of the kind introduced by Anderson 
and Hsiao (1981). We also find that the distributions of the serial-correlation tests are 
well-approximated by their asymptotic counterparts. 

We applied these methods to estimate employment equations using an unbalanced 
panel of 140 quoted U.K. companies for the period 1979-1984. The GMM estimators 
and the serial correlation tests performed well in this application. A potentially serious 
problem, suggested by both the experimental evidence and the application, concerns the 
estimates of the standard errors for the two-step GMM estimator which we find to be 
downward biased in our samples. Further results on alternative estimators of these 
standard errors would be very useful. 

APPENDIX 

A. The asymptotic normality of the m2 statistic 

Following the notation of Section 3, under the assumption that (X 2v*/ N) = op (1) we have 

N-112d^' 6= N112vv - (v' 2X*/N)N152(8-8)+op(1) as N-*oo 

and also 

N-1/2A/ A~ N1/2vLI/-gN2Z V + op(1), N V_2U* N- v_ -g* gN- is( 

where 

= v-2X*(X'ZANZ'XV)'X'ZAN. 

Then a multivariate central limit theorem for independent observations ensures 
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where WN is the average covariance matrix of (4i, ct)': 

1N I iei~ _'N iPN\ 
WN N E( lifi ifi ) N VN) 

and {i = Zvi. Therefore 

-N I2N-lIV2V* Lv +d N(O, 1) (Al) 

where 

VN =)N -2g'N + gNVNgN 

or 

N N (~A i-) VN = N [J=, E(vi(-2)vi*vs*vl(2)) -2(VL2X*)(XZANZX) X ZANLi E(Zviv*vi(2)) 

+(v' 2X*) avar 0 (X*V-2)] 

with 

avar (5) = N(X'ZANZ'X)1(X'ZANVNANZ'X)(X'ZANZ'X)Y1 

A consistent estimate of VN can be obtained by replacing population average expectations of errors by sample 
averages of residuals. Finally, noticing that under our assumptions (Al) remains valid after this replacement, 
the result follows. 

For a one-step ?, we can also consider an alternative m2 criterion ("one step M2") which relies on more 
restrictive auxiliary distributional assumptions. Assuming that the errors in the model in levels are independent 
and identically distributed across individuals and time, we have 

- N 2 
N 

OJN = N a ,- E(V!(-2)H,*Vi(-2)) 

where Hi* is a ( Ti - 4) square matrix which has twos in the main diagonal, minus ones in the first subdiagonals 
and zeros otherwise. Moreover 

1N =N 2N tVi(-2)) N 

where Hit is a ( Ti-2) x ( Ti-4) matrix with 

VH,*J 

and Hi.. is a 2 x (T1 -4) matrix with minus one in the (2, 1) position and zeroes elsewhere. Under such 
conditions v can be replaced by 

V = ff Lil Vi(-2)Hi. A2X*(X ZANZ X) X ZAN (Si= z (Hit -2))a 

+ v^'2X* avar (8)X *V2 

where 52 is an estimate of a2* 

B. The Sargan difference test 

Note that s in (10) can be re-written as 

iYZ* 1 1 ____1 
*j 

61*iN zVI A 
AzI S N= \I N (N '=' 'viviZi -IN` 

where Z* = ZH and H is a p x p linear transformation matrix such that 

Z*=(ZiIZl) 

with 

N Z1 V^V^'Z -* O 
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Letting 

( zN z'=1 IZ z> = CNC'N 

where CN is p x p nonsingular, and noting that 

Z*tv z*1X X1z* z*1x -'xlz* z*1V 
Z/= IP Z XXZ CNC'N ] CNC'N} v 

we have 

vPZ* Z1 
s = CN[IP - G(G'G) IG']C'N ZN 

where 

G= CN N( 

Following the usual argument one can show that s dE'ME M X2 -k, where E - N(O, IP) and M is of the form 
IP- D(D'D) D' with rank p - k. 0 On the same lines we can write 

SI NI CIN[IP -G(G' GI) G']C' Z'1v 

where 

G C'N (Z X) 

and 

( N z i l) CINC IN- 

Let G* contain the top p, rows of G. Notice that G* - G, P 0. 
Therefore 

dS = S -SI -- E ME- E 
Ml 

O)E ds=s-s~-~deMe~P0' 0) 

where Ml = IP DI (D'DY)- D and rank (MI) = p, - k with D'= (D'I D'1). 
Finally notice that 

[M Q ? ?)] 
is symmetric and idempotent with rank p - p, and also 

/Ml 0 Ml o\0 
0 0 00/ 

from which (11) follows. 

DATA APPENDIX 

(a) Sample 

The principal data source used is company accounts from Datastream International which provide accounts 
records of employment and remuneration (i.e. wage bill) for all U.K. quoted companies from 1976 onwards. 
We have used a sample of 140 companies with operations mainly in the U.K., whose main activity is 
manufacturing and for which we have at least 7 continuous observations during the period 1976-1984. Where 
more than 7 observations are available we have exploited this additional information, so that our sample has 
the unbalanced structure described in Table Al. 
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TABLE Al 

Number of records Number of 
on each company companies 

7 103 
8 23 
9 14 

As well as requiring at least 7 continuous observations, companies were excluded from our sample for a 
number of reasons. We required complete records on a set of accounting variables including gross fixed assets, 
investment, inventories and sales as well as employment and remuneration. Companies that changed the date 
of their accounting year end by more than a few days were excluded, so that our data all refer to 12 month 
periods. We also excluded companies where either employment or one of our constructed measures of real 
wages, real capital, real inventories or real sales jumped by more than a factor of 3 from one year to the next. 
This filter will remove both those companies where data has been recorded erroneously and those companies 
that have experienced major mergers. Finally we restricted our attention to companies that we could allocate 
to one of 9 broad sub-sectors of manufacturing industry using Datastream's breakdown of total sales by product 
available from 1980 onwards. 

(b) Variables 

Employment 

Number of U.K. employees (Datastream variable 216) 

Real Wage 
A measure of average annual remuneration per employee was constructed by dividing U.K. remuneration 
(Datastream variable 214) by the number of U.K. employees. This was adjusted to take into account changes 
in average weekly hours worked in manufacturing industries (manual and non-manual employees, 18 years 
and over, male and female, all occupations-source: Department of Employment Gazette, various issues). A 
measure of real average hourly remuneration was then obtained by deflating using an implicit value-added 
price deflator. These implicit price deflators were calculated for each of our sub-sectors of manufacturing 
industry, using the current price and constant price GDP data published in various Blue Books. 

Gross Capital Stock 
Denoting the historic cost book value of gross fixed assets (Datastream variable 330) by HCK,, we obtain an 
estimate of the inflation-adjusted (or replacement cost) value of gross fixed assets (RCK,) using the formula 

RCK, = HCK, xP 

where P' is a price index for investment goods and A is an estimate of the average age of gross fixed assets. 
An implicit price deflator for gross fixed investment by manufacturing industry was calculated using the current 
price and constant price gross fixed investment data published in Economic Trends Annual Supplement (1986, 
p. 56). For the purpose of this exercise a value of A of 6 years was assumed. Our estimates of the gross capital 
stock at replacement cost are then expressed in constant prices using our investment goods deflator. 

Industry Output 
An index of value-added output at constant factor cost was constructed for each of our 9 sub-sectors of 
manufacturing industry, using data published in the Blue Book (1986, Table 2.4). The 15 sub-sectors of 
manufacturing for which this data is reported were combined into 9 using the weights given in the Blue Book. 

Further details on this data set can be found in Arellano and Bond (1988b). 
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