Exercise 2

Basic Multinomial Choice

This assignment will consist of some exercises with the multinomial logit models. The data set for the exercises is the multinomial choice file

\[mnc.lpj \]

This project file contains both the choice data sets discussed in class, the brand choices data and the travel mode data. Altogether, there are 12,800 observations in the brand choices data. The travel mode data appear in the first 840 rows of the data area.

These computations will be based on the shoe brand data.

Use \texttt{SAMPLE ; 1 – 12800} $\$

Preliminaries: The exercises will build on the basic model

\[
U(brand) = \beta_1 \text{Fashion} + \beta_2 \text{Quality} + \beta_3 \text{Price} + \beta_4 \text{Price}^2 + \epsilon_{brand},
\]

\[
U(\text{none}) = \gamma + \epsilon_{\text{none}}.
\]

The model analyzes 4 choices, brand1, brand2, brand3, and ‘none of the brands.’ ASC4 is the constant term that appears only in the ‘NONE’ choice. The central model command will be

\texttt{NLOGIT ; Lhs = choice} \\
\texttt{Choices = brand1,brand2,brand3,none} \\
\texttt{Rhs = fash, qual, price, pricesq,asc4} $\$

There are two characteristic variables, gender and age. Gender is coded as MALE = 1 for men, 0 for women. AGE is categorized as AGE25 = 1 if age \leq 25 and 0 else, AGE39 if 25 $<$ age \leq 39 and 0 else, and AGE40 if age \geq 40. For modeling purposes, we will drop AGE40.

\textbf{I. Multinomial Choice}

1. Fit the basic model. Is pricesq significant? Use the Wald test based on estimates of the basic model. Fit the model without pricesq and use a likelihood ratio test.

2. Do age and sex matter? Add age24, age39 and male to the basic model and use a likelihood ratio test. Note that these variables are choice invariant, so they must be added as

\texttt{; Rh2 = male, age24, age39}

If you add them to the Rhs list instead, estimation will break down.

3. Is there a more general age difference in utility? To explore this, use a Chow style test. To start,

\texttt{CREATE ; Young = age25} $\$

\texttt{; Lhs = choice} \\
\texttt{Choices = brand1,brand2,brand3,none} \\
\texttt{Rhs = fash, qual, price, pricesq,asc4} $\$

\texttt{NLOGIT ; Lhs = choice} \\
\texttt{Choices = brand1,brand2,brand3,none} \\
\texttt{Rhs = fash, qual, price, pricesq,asc4,age25} $\$

\texttt{; Rh2 = male, age24, age39, age25}$
Then,

```
NLOGIT ; if [young = 1] … $
CALC ; lyoung = logl $
NLOGIT ; if [young = 0] … $
CALC ; lold = logl $
NLOGIT ; … $
CALC ; list ; lrtest = 2*(lyoung+lold – logl) $
```

Is the statistic larger than the critical value? Note, there is a way to combine all of these in a single operation:

```
NLOGIT ; For[(test) young =*,0,1]
; … your model specification (must not include age25)
$
```

Carry out the same structural form test for men (MALE=1) vs. women (MALE=0).

II. Elasticities and Marginal Analysis

We estimate a marginal effect (of price) in the MNL model. What are the estimates of the own and cross elasticities across the three brands? What is the evidence of the IIA assumption in these results? Try the following:

```
NLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
; Rhs = Fash,Qual,Price,Asc4
; Effects : Price (*) $
```

What are the effects? Note that the squared price is not in the equation. It is unclear how to compute the elasticity directly in the presence of the square. But, there is a way to explore the effects with the simulator. Consider the following:

```
NLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
; Rhs = Fash,Qual,Price,Pricesq,Asc4 $
NLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
; Rhs = Fash,Qual,Price,Pricesq,Asc4
; Simulate = * ; Scenario:
price (brand*) = [*] 1.1/
pricesq(brand*)=[*]1.21 $
```

The scenario increases the price by 10% and consequently, the square by 21%. What happens to the market shares under this scenario? Try a larger price increase, say 25% (and 62.5%).
Impact of a price change. What would happen to the market shares of the three brands if the price of Brand 1 of shoes rose by 50%. What would happen to the market shares if the prices of all three brands rose by 50%

CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4
 ; Effects : Price (*) $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4
 ; Simulation = *
 ; Scenario: Price (Brand1) = [*] 1.5 $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4
 ; Simulation = *
 ; Scenario: Price (Brand1,Brand2,Brand3) = [*] 1.5 $

III. Specification Analysis

A. Testing for IIA. Is Brand3 an irrelevant alternative in the choice model? Given the way the data are constructed, one wouldn’t think so. Here we investigate. Carry out the Hausman to test the IIA assumption using Brand 3 as the omitted alternative. What do you find?

? ? Testing for IIA

? SAMPLE ; All $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4 $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4 ; IAS = Brand3 $

B. Functional form and marginal impact. Do men pay more attention to fashion than women? To investigate, we fit the choice model with a different coefficient on fashion for men and women. Then, simulate the model so as to see what happens when the variable which carries this effect into the model is zero’d out. What are the results? How do you interpret your findings?

? ? Do men pay different attention to fashion than women?
? Is the difference statistically significant?

? Create ; MaleFash = Male*Fash $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4,MaleFash $
CLOGIT ; Lhs = Choice ; Choices=Brand1,Brand2,Brand3,None
 ; Rhs = Fash,Qual,Price,Asc4,MaleFash
 ; Simulation = * ; Scenario: MaleFash(*) = [*] 0 $
C. Multinomial Probit Model. Do the multinomial logit and multinomial probit models give similar results? You can’t tell directly from the coefficient estimates because of scaling and normalization, so you have to rely on other indicators such as marginal effects. Fit a multinomial probit and a multinomial logit model, and compare the results. Note, estimation of the MNP model is extremely slow, so we have set it up with a very small number of replications and stopped the iterations at 5. This particular model would take 30-50 iterations, and an hour or two, to finish. As it is, this will take a few minutes.

```
NLOGIT ; Lhs = Mode ; output=ic
    Choices = Air,Train,Bus,Car
    Rhs = TTME,INVC,INVT,GC; Rh2=One,Hinc
    Effects: invc (*) $
NLOGIT ; Lhs = Mode ; MNP ; PTS = 5 ; Maxit = 5 ; Halton
    Choices = Air,Train,Bus,Car
    Rhs = TTME,INVC,INVT,GC; Rh2=One,Hinc
    Effects: invc (*) $
```

The multinomial probit model is distinguished by allowing the correlations across utility functions and to some degree, heteroscedasticity across utilities – though not across individuals. For a four outcome model, the covariance matrix for a multinomial probit model must be of the form

$$
\Sigma = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\
\sigma_{31} & \sigma_{32} & \sigma_{33} & \sigma_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

The restrictions on the last two rows are normalizations needed for identification. The built in multinomial probit estimator in Stata actually goes further, and imposes \(\Sigma = I \). You can replicate this model by adding

```
; SDV = 1 ; COR = 0
```

To the multinomial probit command. Fit this model, then compare the reported elasticity matrix to that reported by the initial multinomial logit model. (The difference mostly reflects scale differences in the coefficients – this is the familiar relationship between probit and logit models.)

IV. Nested Logit Model

A. Nested logit model. We begin with a simple nested logit model.

```
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
    ; Rhs = One,GC,TTME,INVT,INVC
    ; Tree = Private(Air,Car),Public(Train,Bus)
    ; Show Tree $
CALC ; LOGLU = LOGL $
```
B. **Constrained nested logit model.** Constraining the IV parameters to equal 1 returns the original multinomial logit model. Use this device to test the restriction. Note that this specification test is whether the MNL is appropriate, against the alternative of the nested logit model.

```
? Constrain IV parameters to produce MNL model
?
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
 ; Rhs = One,GC,TTME,INVT,INVC
 ; Tree = Private(Air,Car),Public(Train,Bus)
 ; IVSET:(Private,Public)=[1] $
CALC ; LOGLR = LOGL $
CALC ; List ; LRTEST = 2*(LOGLU - LOGLR) $
```

C. **Degenerate branch.** A branch that contains only one alternative is labeled ‘degenerate’ (for reasons lost to antiquity). The RU1 and RU2 normalizations produce different results for such models. Fit the two and examine the effect.

```
? Degenerate branch. Two normalizations
?
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
 ; Rhs = One,GC,TTME,INVT,INVC
 ; Tree = Fly(Air),Ground(Car,Train,Bus) $
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
 ; Rhs = One,GC,TTME,INVT,INVC
 ; Tree = Fly(Air),Ground(Card,Train,Bus) ; RU2 $
```

D. **Alternative approaches to reveal scaling.** The nested logit model can be modified to act like the heteroscedastic extreme value buy making all branches contain one alternative. This will allow a different scale parameter in each branch. The HEV model is another way to do this. Are the results similar?

```
? Use nested logit to reveal scaling.
?
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
 ; Rhs = One,GC,TTME,INVT,INVC
 ; Tree = Fly(Air),Drive(Car),Rail(Train),Ride(Bus)
 ; IVSET: (Ride) = [1] ; Par $
NLOGIT ; Lhs = Mode ; Choices=Air,Train,Bus,Car
 ; Rhs = One,GC,TTME,INVT,INVC
 ; HET ; SDV = SA,ST,1.0,SC $
```