

Part 3: Basic Linear Panel Data Models

Benefits of Panel Data

- Time and individual variation in behavior unobservable in cross sections or aggregate time series
- Observable and unobservable individual heterogeneity
- Rich hierarchical structures
- More complicated models
- Features that cannot be modeled with only cross section or aggregate time series data alone
- Dynamics in economic behavior

The British Household Panel
Survey began in 1991 and is a
multi-purpose study whose unique
value resides in the fact that:

- it follows the same representative sample of individuals – the panel – over a period of years;
- · it is household-based, interviewing every adult member of sampled households;
- · it contains sufficient cases for meaningful analysis of certain groups such as the elderly or lone parent families.

The wave 1 panel consists of some 5,500 households and 10,300 individuals drawn from 250 areas of Great Britain. Additional samples of 1,500 households in each of Scotland and Wales were added to the main sample in 1999, and in 2001 a sample of 2,000 households was added in Northern Ireland, making the panel suitable for UK-wide research.

BHPS wave 18 data and documentation are available from the UK Data Archive.

PSID

A national study of socioeconomics and health over lifetimes and across generations

STUDIES | DOCUMENTATION | DATA | PUBS, MEETINGS & MEDIA | PEOPLE | NEWS

Home

RECENT PUBLICATIONS

 Neighborhood Effects in Temporal Perspective: The Impact of Long-Term Exposure to Concentr...

- Multigenerational Households and the School Readiness of Children Born to Unmarried Mother...
- Cumulative Effects of Job Characteristics on Health
- Essays on the Empirical Implications of Performance Pay Contracts

The Panel Study of Income Dynamics - PSID - is the longest running longitudinal household survey in the world.

The study began in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families in the United States. Information on these individuals and their descendants has been collected continuously, including data covering employment, income, wealth, expenditures, health, marriage, childbearing, child development, philanthropy, education, and numerous other topics. The PSID is directed by faculty at the University of Michigan, and the data are available on this website without cost to researchers and analysts.

The data are used by researchers, policy analysts, and teachers around the globe. Over 3,000 peer-reviewed publications have been based on the PSID. Recognizing the importance of the data, numerous countries have created their own PSID-like studies that now facilitate crossnational comparative research. The National Science Foundation recognized the PSID as one of the 60 most significant advances funded by NSF in its 60 year history.

© 2011 PSID

People

Business

Geography

Data

Research

Newsroom

Q Search Go

Home | About Us | Subjects A to Z | FAQs | Help

Survey of Income and Program Participation (SIPP) Main Page

URL: http://www.census.gov/sipp/

Source: U.S. Census Bureau, Demographics Survey Division, Survey of Income and Program Participation branch Created: February 14, 2002 Last revised: June 6, 2012

Measuring America—People, Places, and Our Economy

ARMS Farm Financial and Crop Production Practices

Overview

Tailored Reports

What Is ARMS?

Update & Revision History

Documentation

Contact Us

Questionnaires & Manuals

Overview

The annual Agricultural Resource Management Survey (ARMS) is USDA's primary source of information on the financial condition, production practices, and resource use of America's farm businesses and the economic well-being of America's farm households. ARMS data are essential to USDA, congressional, administration, and industry decision makers when weighing alternative policies and programs that touch the farm sector or affect farm families.

Sponsored jointly by ERS and the National Agricultural Statistics Service (NASS), ARMS is the only national survey that provides observations of field-level farm practices, the economics of the farm businesses operating the field (or dairy herd, green house, nursery, poultry house, etc.), and the characteristics of farm operators and their households (age, education, occupation, farm and off-farm work, types of employment, family living expenses, etc.)—all collected in a representative sample. Information about crop production, farm production, business, and households includes data for selected surveyed States where available. See more background on ARMS....

U.S. Department of Health & Human Services

AHRQ Home

HRR Agency for Healthcare Research and Quality

Questions?

Advancing Excellence in Health Care

Contact Us

Medical Expenditure Panel Survey

Site Map

Contact MEPS MEPS FAQ Español MEPS Site Map

Search MEPS

Browse

Font Size: Go

E-mail

MEPS Home

About MEPS

- :: Survey Background
- :: Workshops & Events
- :: Data Release Schedule

Survey Components

- :: Household
- :: Insurance/Employer
- :: Medical Provider
- :: Survey Questionnaires

Data and Statistics

- :: Data Overview
- :: MEPS Topics
- :: Publications Search
- :: Summary Data Tables
- :: MEPSnet Query Tools

The Medical Expenditure Panel Survey (MEPS) is a set of large-scale surveys of families and individuals, their medical providers, and employers across the United States. MEPS is the most complete source of data on the cost and use of health care and health insurance coverage. Learn more about MEPS.

What's New

Contact MEPS

New to MEPS?

Select a profile:

- General user
- Researcher
- Policymaker
- Media

Información en español

Survey participant

MEPS Topics

- Access to Health Care
- Children's Health
- Children's Insurance Coverage
- **Elderly Health Care**
- . Health Care
- Costs/Expenditures Health Care Disparities

- Health Insurance
- . Medical Conditions
- Medicare/Medicaid/SCHIP
- Men's Health
- Mental Health
- Obesity

- Prescription Drugs
- Projected Data/Expenditures
- Quality of Health Care
- State and Metro Area **Estimates**
- . The Uninsured
- . Women's Health

Cornwell and Rupert Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP = work experience

WKS = weeks worked

= occupation, 1 if blue collar, OCC IND = 1 if manufacturing industry

= 1 if resides in south SOUTH

SMSA = 1 if resides in a city (SMSA)

MS = 1 if married FEM = 1 if female

UNION = 1 if wage set by union contract

= years of education ED

= 1 if individual is black BLK

LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

Balanced and Unbalanced Panels

- Distinction: Balanced vs. Unbalanced Panels
- A notation to help with mechanics

$$z_{i,t}, i = 1,...,N; t = 1,...,T_i$$

- The role of the assumption
 - Mathematical and notational convenience:
 - Balanced, n=NT
 - □ Unbalanced: $n = \sum_{i=1}^{N} T_i$
 - Is the fixed T_i assumption ever necessary? Almost never.
- Is unbalancedness due to nonrandom attrition from an otherwise balanced panel? This would require special considerations.

Application: Health Care Usage

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

This is an unbalanced panel with 7,293 individuals. There are altogether 27,326 observations. The number of observations ranges from 1 to 7.

(Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

(Downloaded from the JAE Archive)

Variables in the file are

DOCTOR = 1(Number of doctor visits > 0)HOSPITAL = 1(Number of hospital visits > 0)

HSAT = health satisfaction, coded 0 (low) - 10 (high) = number of doctor visits in last three months **DOCVIS HOSPVIS** = number of hospital visits in last calendar year

PUBLIC = insured in public health insurance = 1; otherwise = 0

= insured by add-on insurance = 1; otherswise = 0 ADDON

HHNINC = household nominal monthly net income in German marks / 10000.

(4 observations with income=0 were dropped)

HHKIDS = children under age 16 in the household = 1; otherwise = 0

EDUC = years of schooling

AGE = age in years MARRIED = marital status

An Unbalanced Panel: RWM's GSOEP Data on Health Care

Fixed and Random Effects

Unobserved individual effects in regression: $E[y_{it} | \mathbf{x}_{it}, c_i]$ Notation: $y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + C_i + \varepsilon_{it}$

n:
$$\mathbf{y}_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + \mathbf{C}_{i} + \boldsymbol{\varepsilon}_{it}$$

$$\mathbf{X}_{i} = \begin{bmatrix} \mathbf{x}'_{i1} \\ \mathbf{x}'_{i2} \\ \vdots \\ \mathbf{x}'_{iT_{i}} \end{bmatrix}$$
T_i rows, K columns

Linear specification:

Fixed Effects: $E[c_i \mid X_i] = g(X_i)$. $Cov[x_{it}, c_i] \neq 0$ effects are correlated with included variables.

Random Effects: $E[c_i \mid X_i] = 0$. $Cov[x_{it}, c_i] = 0$

Convenient Notation

Fixed Effects – the 'dummy variable model'

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\mathbf{\beta} + \varepsilon_{it}$$

Individual specific constant terms.

Random Effects – the 'error components model'

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \varepsilon_{it} + U_i$$

Compound ("composed") disturbance

Estimating **B**

- β is the partial effect of interest
- Can it be estimated (consistently) in the presence of (unmeasured) c_i?
 - Does pooled least squares "work?"
 - Strategies for "controlling for c_i" using the sample data

The Pooled Regression

Presence of omitted effects

```
y_{ij} = x\beta \in c_i \circ b servation for person i at time
= X\beta + c_i + \epsilon_i, note c_i = (c_i, c_i, ..., c_i)'
y = \Sigma + \Sigma + \sum_{i=1}^{N} T_i observations in the sample
```

Potential bias/inconsistency of OLS – depends on 'fixed' or 'random'

OLS with Individual Effects

$$b = (X'X)^{-1}X'y$$

The third term vanishes asymptotically by assumption

plim
$$\mathbf{b}\boldsymbol{\beta} = + \mathbf{E}\lim \left[\frac{1}{N}\mathbf{X}_{=}^{N}\mathbf{X}\boldsymbol{\Sigma}_{i}^{T}\right]^{-1}\left[\mathbf{c}_{=1}^{N}\mathbf{X}_{+}^{T}\mathbf{E}_{i}^{T}\right]$$
 out variable for mula)

So, what becomes of $\sum_{i=1}^{n} w_i \overline{\mathbf{x}}_{i}$?

plim **b\beta** if the covariance \mathbf{x} of \mathbf{r}_i and \mathbf{r}_j converges to zero.

Estimating the Sampling Variance of b

- $s^2(\mathbf{X}'\mathbf{X})^{-1}$? Inappropriate because
 - Correlation across observations
 - (Possibly) Heteroscedasticity
- A 'robust' covariance matrix
 - Robust estimation (in general)
 - The White estimator
 - A Robust estimator for OLS.

THE PARTY OF THE P

Cluster Estimator

Robust variance estimator for Var[**b**] Est.Var[**b**]

$$= \left[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \left[\Sigma_{i=1}^{\mathsf{N}} (\Sigma_{t=1}^{\mathsf{T}_{i}} \mathbf{x}_{it} \hat{\mathbf{V}}_{it}) (\Sigma_{t=1}^{\mathsf{T}_{i}} \mathbf{x}'_{it} \hat{\mathbf{V}}_{it}) \right] (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \right]$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \left[\Sigma_{i=1}^{\mathsf{N}} \left(\Sigma_{t=1}^{\mathsf{T}_i} \Sigma_{s=1}^{\mathsf{T}_i} \hat{\mathbf{V}}_{it} \hat{\mathbf{V}}_{is} \mathbf{X}_{it} \mathbf{X}_{is}' \right) \right] (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$$

$$\hat{V}_{it}$$
 = a least squares residual = $\hat{\epsilon}_{it} + \hat{c}_i$

(If $T_i = 1$, this is the White estimator.)

Application: Cornwell and Rupert

	+					
Variable Coefficient		Sta	ındard Error			-
Constant		-	.04685914	120.808	-	-+
occ	11220205		.01464317	-7.662	.0000	.51116447
SMSA	.15504405		.01233744	12.567	. 0000	.65378151
MS	.09569050		.02133490	4.485	. 0000	.81440576
FEM	39478212		.02603413	-15.164	. 0000	.11260504
ED	.05688005		.00267743	21.244	. 0000	12.8453782
EXP	.01043785		.00054206	19.256	. 0000	19.8537815
Sample of	ce matrix for tl f 4165 observa bservations (fix	ation xed n	umber) in e	595 cl ach cluste	usters de: r.	fined by
Sample of 7 of Sample of 9	f 4165 observa bservations (fix	ation xed n ation	s contained wmber) in e s contained	595 cl ach cluste 1 st	usters de: r. rata defi:	fined by
Sample of 7 of Sample of 4165 of 5	f 4165 observa bservations (fix f 4165 observa bservations (fix	ation xed n ation xed n	s contained number) in e ns contained number) in e	595 cl ach cluste 1 st ach stratu	usters de r. rata defii m.	fined by
Sample of 7 of Sample of 9	f 4165 observa bservations (fix f 4165 observa bservations (fix	ation xed n ation xed n	s contained wmber) in e s contained	595 cl ach cluste 1 st	usters de r. rata defii m. .0000	fined by
Sample of 7 of Sample of 4165 of Constant	f 4165 observa bservations (fix f 4165 observa bservations (fix 5.66098218	ation xed n ation xed n	s contained number) in e ns contained number) in e .10026368	595 cl ach cluste 1 st ach stratu 56.461	usters de r. rata defii m. .0000	fined by
Sample of 7 of Sample of 4165 of Constant OCC	f 4165 observations (fix bservations (fix f 4165 observa bservations (fix 5.66098218 11220205	ation xed n ation xed n	umber) in e umber) in e us contained umber) in e .10026368 .02653437	595 cl ach cluste 1 st ach stratu 56.461 -4.229	usters de r. rata defin m. .0000 .0000	fined by ned by .51116447 .65378151
Sample of 7 of Sample of Sample of 4165 of Constant OCC SMSA	f 4165 observations (fix bservations (fix f 4165 observa bservations (fix 	ation xed n ation xed n	umber) in e umber) in e s contained umber) in e .10026368 .02653437	595 cl ach cluste 1 st ach stratu 56.461 -4.229 6.104	usters de r. rata defii m. .0000 .0000 .0000	fined by ned by .51116447 .65378151
Sample of 7 of Sample of 4165 of Constant OCC	f 4165 observations (fix f 4165 observa- bservations (fix 	ation xed n ation xed n	umber) in e umber) in e us contained umber) in e .10026368 .02653437 .02540156	595 cl ach cluste 1 st ach stratu 56.461 -4.229 6.104 2.055	usters de r. rata defin m. .0000 .0000 .0000	fined by

Bootstrap variance for a panel data estimator

- Panel Bootstrap =Block Bootstrap
- Data set is N groups of size T_i
- Bootstrap sample is N groups of size T_i drawn with replacement.

LWAGE	Coefficient	Standard Error	z	Prob. z >Z*	95% Confidence Interval		ols
Constant OCC SMSA MS FEM ED EXP	5.66098***11220*** .15504*** .09569***39478*** .05688***	.04686 .01464 .01234 .02133 .02603 .00268 .00054	120.81 -7.66 12.57 4.49 -15.16 21.24 19.26	.0000 .0000 .0000 .0000 .0000 .0000	5.56914 14090 .13086 .05387 44581 .05163 .00938	5.75282 08350 .17922 .13751 34376 .06213 .01150	
B001 B002 B003 B004 B005 B006 B007	5.66098***11220*** .15504*** .09569***39478*** .05688***	.04683 .01326 .01205 .01953 .01863 .00325 .00053	120.89 -8.46 12.87 4.90 -21.19 17.52 19.67	.0000 .0000 .0000 .0000 .0000 .0000	5.56920 13820 .13143 .05742 43129 .05052 .00940	5.75276 08620 .17866 .13396 35827 .06324 .01148	Bootstrap Assumes no correlation within groups
Constant OCC SMSA MS FEM ED EXP	5.66098*** 11220*** .15504*** .09569** 39478*** .05688***	.10026 .02653 .02540 .04657 .05319 .00568 .00132	56.46 -4.23 6.10 2.05 -7.42 10.01 7.93	.0000 .0000 .0000 .0399 .0000 .0000	5.46447 16421 .10526 .00442 49904 .04574 .00786	5.85750 06020 .20483 .18696 29052 .06802 .01302	Cluster Accounts for within group correlation Block Bootstrap
B001 B002 B003 B004 B005 B006 B007	5.66098***11220*** .15504*** .09569***39478*** .05688***	.09497 .02617 .02351 .03542 .04287 .00536	59.61 -4.29 6.60 2.70 -9.21 10.61 7.57	.0000 .0000 .0000 .0069 .0000 .0000	5.47484 16349 .10897 .02627 47880 .04637 .00774	5.84712 06092 .20112 .16511 31077 .06739 .01314	Mimics results of panel correction

The Fixed Effects Model

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{d}_i \mathbf{a}_i + \boldsymbol{\epsilon}_i$$
, for each individual

$$\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix} = \begin{bmatrix}
X_1 & d_1 & 0 & 0 & 0 \\
X_2 & 0 & d_2 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_N & 0 & 0 & 0 & d_N
\end{bmatrix} \begin{pmatrix} \beta \\ \alpha \end{pmatrix} + \epsilon$$

$$= [X, Da] \begin{pmatrix} \beta \\ \alpha \end{pmatrix} +$$

 $E[c_i \mid X_i] = g(X_i)$; Effects are correlated with included variables. $Cov[x_{it}, c_i] \neq 0$

Estimating the Fixed Effects Model

- The FEM is a plain vanilla regression model but with many independent variables
- Least squares is unbiased, consistent, efficient, but inconvenient if N is large.

$$\begin{pmatrix} \mathbf{b} \\ \mathbf{a} \end{pmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{D} \\ \mathbf{D}'\mathbf{X} & \mathbf{D}'\mathbf{D} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{D}'\mathbf{y} \end{bmatrix}$$

Using the Frisch-Waugh theorem

$$\mathbf{b} = [\mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{X}]^{-1} [\mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{y}]$$

The Within Groups Transformation Removes the Effects

$$y_{it} = \varepsilon \mathbf{x} \mathbf{\beta} + C_{i} + \mathbf{b}_{it}$$

$$\overline{y}_{i} = \varepsilon \overline{\mathbf{x}} \mathbf{\beta} + C_{i} + \mathbf{b}_{i}$$

$$y_{it} - \overline{\mathbf{y}}_{i} = (\varepsilon \mathbf{x})_{t} - \mathbf{\beta} \overline{\mathbf{x}}_{i})' + (\mathbf{b}_{it} - \mathbf{b}_{i})'$$

Use least squares to estimate **\beta**.

Least Squares Dummy Variable Estimator

- **b** is obtained by 'within' groups least squares (group mean deviations)
- a is estimated using the normal equations:

$$a = (D'D)^{-1}D'(y - Xb)$$

 $a_i = (1/T_i)\sum_{t=1}^{T_i} (y_i - x_{it}'b) = e_i$

Application Cornwell and Rupert

+				+				
Panel Da	Panel Data Analysis of LWAGE [ONE way]							
1	Unconditional	ANOVA (No re	gressors)	I				
Source	Variation	Deg. Free.	Mean Squar	e l				
Between	646.254	594 .	1.08797					
Residual	240.651	3570.	. 674093E-0	1				
Total	886.905	4164 .	. 212994	I				
•								

OLS Without Group Dummy Variables					
LHS=LWAGE	Mean	=	6.676346		
	Standard deviation	=	.4615122		
Model size	Parameters	=	5		
	Degrees of freedom	=	4160		
Residuals	Sum of squares	=	651.7870		
]	Standard error of e	=	. 3958277		
Fit	R-squared	=	. 2650993		
	Adjusted R-squared	=	. 2643927		
Model test	F[4, 4160] (prob)	= 3	75.16 (.0000)	l 	

-	Coefficient	Standard Error			
0CC	29227536	.01259221	-23.211	. 0 0 0 0	.51116447
SMSA	. 17712491	.01327104	13.347	.0000	.65378151
MS	.35695474	.01610229	22.168	.0000	.81440576
EXP	.00746892	.00057035	13.095	.0000	19.8537815
Constant	6.27095389	.02041864	307.119	.0000	

LSDV Results

+						
Least Squares with Group Dummy Variables						
LHS=LWAGE	меan	=	6.676	346		
l	Standard deviation	=	.4615	122		
Model size	Parameters	=		599		
l	Degrees of freedom	=	3	566		
Residuals	Sum of squares	=	83.88	505		
l	Standard error of e	=	. 1533	740		
Fit	R-squared	=	.9054	182		
l	Adjusted R-squared	=	. 8895	573		
Model test	F[598, 3566] (prob)	=	57.08	(.0000)		
+						
+						
Panel:Groups	Empty 0, V	alid	data	595		
·	Smallest 7, L	arge	st	7		
l	Average group size			7.00		

Note huge changes in the coefficients. SMSA and MS change signs. Significance changes completely!

		efficient	Standard Error				Pooled	SJO b
,	OCC SMSA MS EXP	02021384 04250645 02946444 .09665711	.01374007 .01950085 .01913652 .00119162	-1.471 -2.180 -1.540 81.114	. 1412 . 0293 . 1236 . 0000	.51116447 .65378151 .81440576 19.8537815	29227536 .17712491 .35695474 .00746892	.012! .013; .016; .000!

27526 0125922		
27536	.01259221	

29227536	.01259221
.17712491	.01327104
. 35695474	.01610229
.00746892	.00057035

The Effect of the Effects

+ -				+
1	Test Stat	tistics for the	Classical Model	1
-				
-	Model	Log-Likelihood	Sum of Squares	R-squared
- 1	(1) Constant term only	-2688.80597	. 8869049390D+03	.0000000
-	(2) Group effects only	27.58464	. 2406511943D+03	.7286618
1	(3) X - variables only	-2047.35445	. 6517870323D+03	. 2650993
- 1	(4) X and group effect:	s 2222.33376	. 8388505089D+02	.9054182
-				
1		${ t Hypothes}$	is Tests	1
-	Likelihood	d Ratio Test	F Tests	ı
-	Chi-squared o	d.f. Prob.	F num. denom.	Prob value
1	(2) vs (1) 5432.781	594 . 00000	16.140 594 3570	. 00000
1	(3) vs (1) 1282.903	4 .00000	375.157 4 4160	.00000
-	(4) vs (1) 9822.279	598 . 00000	57.085 598 3566	.00000
-	(4) vs (2) 4389.498	4 . 00000	1666.054 4 3566	. 00000 I
		E04 00000	40 (42 - 504 - 25(6	00000
ı	(4) vs (3) 8539.376	594 . 00000	40.643 594 3566	. 00000

A Caution About Stata and R²

R squared = 1 -
$$\frac{\text{Residual Sum of Squares}}{\text{Total Sum of Squares}}$$

Or is it? What is the total sum of squares?

Conventional: Total Sum of Squares =
$$\sum_{i=1}^{N} \sum_{t=1}^{T_i} (y_{it} - \overline{y})^2$$

$$= \sum_{i=1}^{N} \sum_{t=1}^{T_i} (y_{it} - \overline{y}_i)^2$$

For the FE model above,

$$R^2 = 0.90542$$

$$R^2 = 0.65142$$

Which should appear in the denominator of R²

The coefficient estimates and standard errors are the same. The calculation of the R² is different. In the **areg** procedure, you are estimating coefficients for each of your covariates plus each dummy variable for your groups. In the **xtreg**, **fe** procedure the R² reported is obtained by only fitting a mean deviated model where the effects of the groups (all of the dummy variables) are assumed to be fixed quantities. So, all of the effects for the groups are simply subtracted out of the model and no attempt is made to quantify their overall effect on the fit of the model.

Since the SSE is the same, the $R^2=1$ –SSE/SST is very different. The difference is real in that we are making different assumptions with the two approaches. In the **xtreg**, **fe** approach, the effects of the groups are fixed and **unestimated quantities are subtracted out of the model** before the fit is performed. In the **areg** approach, the group effects are estimated and affect the total sum of squares of the model under consideration.

Examining the Effects with a KDE

Mean = 4.819, Standard deviation = 1.054.

Robust Covariance Matrix for LSDV Cluster Estimator for Within Estimator

Variable	Coefficient Sta	ndard Error	+ b/St.Er.	P[Z >z]	Mean of X		
OCC SMSA MS EXP	02021 04251** 02946 .09666***	.01913652 -1.540 .1236 .814					
Sample o	Covariance matrix for the model is adjusted for data clustering. Sample of 4165 observations contained 595 clusters defined by 7 observations (fixed number) in each cluster.						
•	Coefficient Sta			·	•		
DOCC DSMSA DMS DEXP	02021 04251 02946 .09666***	.01982162 .03091685 .02635035 .00176599	-1.020 -1.375 -1.118 54.732	.1692	.00000 .00000 .00000		

Time Invariant Regressors

- Time invariant x_{it} is defined as invariant for all i. E.g., sex dummy variable, FEM and ED (education in the Cornwell/Rupert data).
- If $\mathbf{x}_{it,k}$ is invariant for all t, then the group mean deviations are all 0.

FE With Time Invariant Variables

FEM	re 3 vars. with ED BLK			j +	
Variable	Coefficient		b/St.Er.	_	_
EXP WKS OCC SMSA	.09671227 .00118483 02145609 04454343	.00119137 .00060357 .01375327 .01946544	1.963 -1.560	.0496 .1187	46.8115246 .51116447
FEM ED BLK	.000000	(Fixed(Fixed(Fixed	Parameter)	• • • • • •	
++ Test Statistics for the Classical Model +					
(1) Con (2) Gro (3) X -	odel stant term only up effects only variables only nd group effects	-2688.80597 27.58464 -1688.12010	886 240 548	quares R .90494 .65119 .51596 .85013	.00000 .72866

++ Variable	Coefficient	Standard Error	•	Er. P[Z >z	•
EXP WKS OCC SMSA	.09671227 .00118483 02145609 04454343	.00119087 .00060332 .01374749 .01945725	81.2 1.9 -1.9 -2.2	964 .0495 561 .1186	46.8115246 .51116447
İ	Test Statis	tics for the Cla	ssical	Model	į
(1) Cons (2) Grou (3) X -	odel stant term only up effects only variables only ud group effects		Sum o	of Squares 886.90494 240.65119 548.51596 83.85013	R-squared .00000 .72866 .38154 .90546

No change in the sum of squared residuals

Fixed Effects Vector Decomposition

Efficient Estimation of Time Invariant and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed Effects

Thomas Plümper and Vera Troeger Political Analysis, 2007

Introduction

[T]he FE model ... does not allow the estimation of time invariant variables. A second drawback of the FE model ... results from its inefficiency in estimating the effect of variables that have very little within variance.

This article discusses a remedy to the related problems of estimating time invariant and rarely changing variables in FE models with unit effects

The Model

$$y_{it} \notin +_i \sum_{k=1}^{K} x_k +_{kit} \sum_{m=1}^{M} z_m +_{mi} \epsilon_{it}$$

where α_i denote the N unit effects.

Fixed Effects Vector Decomposition

Step 1: Compute the fixed effects regression to get the "estimated unit effects." "We run this FE model with the sole intention to obtain estimates of the unit effects, a_i."

$$\hat{\alpha}_{i} = \overline{y}_{i} - \sum_{k=1}^{K} b_{k}^{FE} \overline{x}_{ki}$$

Step 2

Regress a_i on **z**_i and compute residuals

$$a_i \neq \sum_{m=1}^{M} + h_{m \text{ im}}$$

 h_i is orthogonal to \mathbf{z}_i (since it is a residual) Vector \mathbf{h}_i is expanded so each element h_i is replicated T_i times - \mathbf{h} is the length of the full sample.

Step 3

Regress y_{it} on a constant, **X**, **Z** and **h** using ordinary least squares to estimate α , β , γ , δ .

$$y_{it} \in + \sum_{k=1}^{K} x_k + \sum_{kit}^{M} \sum_{m=1}^{M} z_m + \delta h + \epsilon_{it}$$

Notice that α_i in the original model has become $\alpha+\delta h_i$ in the revised model.

Step 1 (Based on full sample)

These 3 variables have no within group variation.

FEM ED BLK

F.E. estimates are based on a generalized inverse.

LWAGE	Coefficient	Standard Error	z	Prob. z> Z	Mean of X
EXP	.09663***	.00119	81.13	.0000	19.8538
wks	.00114*	.00060	1.88	.0600	46.8115
occ	02496*	.01390	-1.80	.0724	.51116
IND	.02042	.01558	1.31	.1899	.39544
SOUTH	00091	.03457	03	.9791	.29028
SMSA	04581**	.01955	-2.34	.0191	.65378
UNION	.03411**	.01505	2.27	.0234	.36399
FEM	.000	(Fixed	Parameter)	.11261
ED	.000	(Fixed	Parameter)	12.8454
BLK	.000	(Fixed	Parameter)	.07227

Step 2 (Based on 595 observations)

 UHI	Coefficient	Standard Error	z	Prob. z> Z	Mean of X
Constant	2.88090***	.07172	40.17	.0000	
FEM	09963**	.04842	-2.06	.0396	.11261
ED	.14616***	.00541	27.02	.0000	12.8454
BLK	27615***	.05954	-4.64	.0000	.07227

Step 3!

 LWAGE	Coefficient	Standard Error	z	Prob. z> Z	Mean of X
Constant	2.88090***	.03282	87.78	.0000	
EXP	.09663***	.00061	157.53	.0000	19.8538
WKS	.00114***	.00044	2.58	.0098	46.8115
occ	02496***	.00601	-4.16	.0000	.51116
IND	.02042***	.00479	4.26	.0000	.39544
SOUTH	00091	.00510	18	.8590	.29028
SMSA	04581***	.00506	-9.06	.0000	.65378
UNION	.03411***	.00521	6.55	.0000	.36399
FEM	09963***	.00767	-13.00	.0000	.11261
ED	.14616***	.00122	120.19	.0000	12.8454
BLK	27615***	.00894	-30.90	.0000	.07227
HI	1.00000***	.00670	149.26	.0000	103D-13

The Magic

Step 1			Step 3		
LWAGE	+ Coefficient	Standard Error	 C	oefficient 	Standard Error
<u></u> -	+			2.88090***	.03282
EXP	.09663***	.00119	- 1	.09663***	.00061
WKS	.00114*	.00060	ı	.00114***	.00044
occ	02496*	.01390		02496***	.00601
IND	.02042	.01558	- 1	.02042***	.00479
SOUTH	00091	. 03457		00091	.00510
SMSA	04581**	.01955		04581***	. 00506
UNION	.03411**	.01505	- 1	.03411***	.00521
	+		I	09963***	.00767
	Step 2	Standard	I	.14616***	.00122
UHI	Coefficient	Error	- 1	27615***	.00894
	+- <u></u>		- 1	1.00000***	.00670
Constant	2.88090***	.07172	+		
FEM	09963**	.04842			
ED	.14616***	.00541			
BLK	27615***	.05954			
	+				

What happened here?

$$y_{it} \notin +_i \sum_{k=1}^{K} x_k$$
 the $\sum_{m=1}^{M} z_m$ the z_m where α_i denote the N unit effects. An assumption is added along the way $Cov(\alpha_i, Z_i) = \mathbf{0}$. This is exactly the number of orthogonality assumptions needed to identify γ. It is not part of the original model.

The Random Effects Model

The random effects model

```
y_{ij} = x\beta \in c_i \circ b servation for person i at time
y<sub>i</sub>=βK<sub>i</sub> i cε+ <sub>i</sub>, T<sub>i</sub> observations in group i
    = X\beta + c_i + \epsilon_i, note c_i = (c_i, c_i, ..., c_i)'
y = \Sigma + \Sigma_{i=1}^{N} T_{i} observations in the sample
      c = (\mathbf{c}'_1, \mathbf{c}'_2, ... \mathbf{c}'_N)', \Sigma_{i=1}^N T_i by 1 vector
```

c_i is uncorrelated with **x**_{it} for all t;

$$E[c_i | \mathbf{X}_i] = 0$$

$$E[\epsilon_{it} | \mathbf{X}_i, c_i] = 0$$

Error Components Model

A Generalized Regression Model

$$\begin{aligned} & \mathbf{y}_{it} \, \mathbf{\xi} \, \mathbf{x}_{i}^{\dagger} \mathbf{b} + _{it} \quad i \\ & \mathbf{E}[\mathbf{\epsilon}_{it} \mid \mathbf{X}_{i}] = \mathbf{0} \\ & \mathbf{E}[\mathbf{\epsilon}_{it}^{2} \mid \mathbf{X}_{i}] = \sigma_{\varepsilon}^{2} \quad \text{Var}[\mathbf{\epsilon}_{i} + \mathbf{u}_{i}^{\dagger}] = \begin{bmatrix} \sigma_{\varepsilon}^{2} + \sigma_{u}^{2} & \sigma_{u}^{2} & \cdots & \sigma_{u}^{2} \\ \sigma_{u\varepsilon}^{2} & \sigma^{2} + \sigma^{2} & \cdots & \sigma^{2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \sigma_{u\varepsilon}^{2} & \sigma_{u}^{2} & \cdots & \sigma^{2} + \sigma^{2} \end{bmatrix} = \mathbf{\Omega}_{i} \\ & \mathbf{E}[\mathbf{u}_{i}^{2} \mid \mathbf{o}\mathbf{X}_{i}] = \mathbf{u} \\ & \mathbf{y}_{i} = \mathbf{k}_{i} \, \mathbf{\epsilon} + \mathbf{k}_{i} \, \mathbf{i} \, \mathbf{u}_{i} \quad \text{for } \mathbf{T}_{i} \text{ observations} \end{aligned}$$

Random vs. Fixed Effects

- Random Effects
 - Small number of parameters
 - Efficient estimation
 - Objectionable orthogonality assumption $(c_i \perp X_i)$
- Fixed Effects
 - Robust generally consistent
 - Large number of parameters

Ordinary Least Squares

- Standard results for OLS in a GR model
 - Consistent
 - Unbiased
 - Inefficient
- True variance of the least squares estimator

$$Var[\mathbf{b} \mid \mathbf{X}] = \frac{1}{\sum_{i=1}^{N} T_i} \left[\frac{\mathbf{X}\mathbf{X}\mathbf{X}}{\sum_{i=1}^{N} T_i} \right]^{-1} \frac{\mathbf{X}\mathbf{X}\mathbf{X}}{\sum_{i=1}^{N} T_i} \left[\frac{'}{\sum_{i=1}^{N} T_i} \right]^{-1}$$

$$\rightarrow \mathbf{0} \times \mathbf{Q}^{-1} \times \mathbf{Q} \times \mathbf{Q}^{-1}$$

$$\rightarrow \mathbf{0} \text{ as } \mathbf{N} \rightarrow \mathbf{0}$$

Estimating the Variance for OLS

$$Var[\mathbf{b} \mid \mathbf{X}] = \frac{1}{\Sigma_{i=1}^{N} T_{i}} \left[\frac{\mathbf{XX}}{\Sigma_{i=1}^{N} T_{i}} \right]^{-1} \left(\frac{\mathbf{XX}}{\Sigma_{i=1}^{N} T_{i}} \right) \left[\frac{\mathbf{X}}{\Sigma_{i=1}^{N} T_{i}} \right]^{-1}$$

In the spirit of the White estimator, use

$$\frac{\mathbf{X}\widehat{\mathbf{\Omega}}\mathbf{X}}{\Sigma_{i=1}^{N}T_{i}} = \Sigma_{i=1}^{N}f_{i}\frac{\mathbf{X}_{i}'\widehat{\mathbf{w}}_{i}\widehat{\mathbf{w}}_{i}'\mathbf{X}_{i}}{T_{i}}, \quad \widehat{\mathbf{w}}_{i} = \mathbf{y}_{i} - \mathbf{X}_{i}\mathbf{b}, \quad f_{i} = \frac{T_{i}}{\Sigma_{i=1}^{N}T_{i}}$$

Hypothesis tests are then based on Wald statistics.

THIS IS THE 'CLUSTER' ESTIMATOR

OLS Results for Cornwell and Rupert

```
Residuals
              Sum of squares
                                    = 522.2008
              Standard error of e
                                    = .3544712
 Fit
              R-squared
                                    = .4112099
              Adjusted R-squared
                                        .4100766
           Coefficient | Standard Error | b/St.Er. | P[|Z|>z] | Mean of X |
Variable
              5.40159723
                               .04838934
                                           111.628
                                                      .0000
Constant
                               .00218534
                                            18.693
                                                      .0000
EXP
                .04084968
                                                               19.8537815
                             .480428D-04
                                           -14.318
                                                      .0000
                                                               514.405042
              -.00068788
EXPSQ
              -.13830480
                               .01480107
                                            -9.344
                                                      .0000
                                                                .51116447
OCC
               .14856267
                               .01206772
                                            12.311
                                                      .0000
                                                                .65378151
SMSA
                .06798358
                               .02074599
                                             3.277
                                                      .0010
                                                                .81440576
MS
                                           -15.843
              -.40020215
                               .02526118
                                                      .0000
                                                                .11260504
FEM
               .09409925
                               .01253203
                                             7.509
                                                      .0000
                                                                .36398559
UNION
                .05812166
                               .00260039
                                            22.351
                                                      .0000
                                                               12.8453782
ED
```

Alternative Variance Estimators

++	+		-+	++
Variable	Coefficient S	tandard Error	b/St.Er.	P[Z >z]
++	+		-+	++
Constant	5.40159723	.04838934	111.628	.0000
EXP	.04084968	.00218534	18.693	.0000
EXPSQ	00068788	.480428D-04	-14.318	.0000
OCC	13830480	.01480107	-9.344	.0000
SMSA	.14856267	.01206772	12.311	.0000
MS	.06798358	.02074599	3.277	.0010
FEM	40020215	.02526118	-15.843	.0000
UNION	.09409925	.01253203	7.509	.0000
ED	.05812166	.00260039	22.351	.0000
Robust - Cl	uster			
Constant	5.40159723	.10156038	53.186	.0000
EXP	.04084968	.00432272	9.450	.0000
EXPSQ	00068788	.983981D-04	-6.991	.0000
OCC	13830480	.02772631	-4.988	.0000
SMSA	.14856267	.02423668	6.130	.0000
MS	.06798358	.04382220	1.551	.1208
FEM	40020215	.04961926	-8.065	.0000
UNION	.09409925	.02422669	3.884	.0001
ED	.05812166	.00555697	10.459	.0000

Generalized Least Squares

GLS is equivalent to OLS regression of

$$y_{it}^* = y_{it} - \theta_i \overline{y}_i$$
. on $\mathbf{x}_{it}^* = \mathbf{x}_{it} - \theta_i \overline{\mathbf{x}}_i$.,

where
$$\theta_i = 1 - \frac{\sigma_\epsilon}{\sqrt{\sigma_\epsilon^2 + T_i \sigma_u^2}}$$

Asy.
$$Var[\hat{\boldsymbol{\beta}}] = [\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{X}]^{-1} = \sigma_{\epsilon}^{2}[\mathbf{X}'*\mathbf{X}^{*}]^{-1}$$

Estimators for the Variances

$$y_{it} = x \beta + \epsilon_{it} + u_i$$

Using the OLS estimator of $\boldsymbol{\beta}$, $\boldsymbol{b}_{\text{OLS}}$,

$$\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (\mathbf{y}_{it} - \mathbf{a} - \mathbf{x}_{it}' \mathbf{b})^2}{\left(\sum_{i=1}^{N} T_i\right) - 1 - K} \text{ estimates } \sigma_{\epsilon}^2 + \sigma_{U}^2$$

With the LSDV estimates, a_i and **b**_{ISDV},

$$\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (y_{it} - a_i - x'_{it}b)^2}{\left(\sum_{i=1}^{N} T_i\right) - N - K}$$
estimates σ_{ϵ}^2

Using the difference of the two,

$$\left[\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (\mathbf{y}_{it} - \mathbf{a} - \mathbf{x}_{it}' \mathbf{b})^2}{\left(\sum_{i=1}^{N} T_i\right) - 1 - K}\right] - \left[\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (\mathbf{y}_{it} - \mathbf{a}_i - \mathbf{x}_{it}' \mathbf{b})^2}{\left(\sum_{i=1}^{N} T_i\right) - N - K}\right] \text{ estimates } \sigma_U^2$$

Practical Problems with FGLS

- The preceding regularly produce negative estimates of σ_u^2 .
- Estimation is made very complicated in unbalanced panels.

A bulletproof solution (originally used in TSP, now NLOGIT and others).

From the robust LSDV estimator:
$$\hat{\sigma}_{\epsilon}^2 = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (y_{it} - a_i - \mathbf{x}_{it}' \mathbf{b}_{LSDV})^2}{\sum_{i=1}^{N} T_i}$$

From the pooled OLS estimator: Est
$$(\sigma_{\epsilon}^2 + \sigma_u^2) = \frac{\sum_{i=1}^N \sum_{t=1}^{T_i} (y_{it} - a_{OLS} - \mathbf{x}_{it}' \mathbf{b}_{OLS})^2}{\sum_{i=1}^N T_i} \ge \hat{\sigma}_{\epsilon}^2$$

$$\hat{\sigma}_{u}^{2} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_{i}} (y_{it} - a_{OLS} - \boldsymbol{x}_{it}' \boldsymbol{b}_{OLS})^{2} - \sum_{i=1}^{N} \sum_{t=1}^{T_{i}} (y_{it} - a_{i} - \boldsymbol{x}_{it}' \boldsymbol{b}_{LSDV})^{2}}{\sum_{i=1}^{N} T_{i}} \geq 0$$

Stata Variance Estimators

$$\hat{\sigma}_{\epsilon}^2 = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} (y_{it} - a_i - \boldsymbol{x}_{it}' \boldsymbol{b}_{LSDV})^2}{\sum_{i=1}^{N} T_i - K - N} > 0 \text{ based on FE estimates}$$

$$\hat{\sigma}_u^2 = Max \left[0, \frac{SSE(group\ means)}{N-A} - \frac{(N-K)\hat{\sigma}_\epsilon^2}{(N-A)\overline{T}} \right] \ \geq \ 0$$

where A = K or if $\hat{\sigma}_u^2$ is negative,

A=trace of a matrix that somewhat resembles I_{κ} .

Many other adjustments exist. None guaranteed to be positive. No optimality properties or even guaranteed consistency.

Application

```
Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates:
                                    .231188D-01
           Var[e]
                                  .102531D+00
            Var[u]
            Corr[v(i,t),v(i,s)] = .816006
Variance estimators are based on OLS residuals.
```

No problems arise in this sample.

· •	1			· .4	
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
EXP	.08819204	.00224823	39.227	.0000	19.8537815
EXPSQ	00076604	.496074D-04	-15.442	.0000	514.405042
OCC	04243576	.01298466	-3.268	.0011	.51116447
SMSA	03404260	.01620508	-2.101	.0357	.65378151
MS	06708159	.01794516	-3.738	.0002	.81440576
FEM	34346104	.04536453	-7.571	.0000	.11260504
UNION	.05752770	.01350031	4.261	.0000	.36398559
ED	.11028379	.00510008	21.624	.0000	12.8453782
Constant	4.01913257	.07724830	52,029	.0000	

Testing for Effects: An LM Test

Breusch and Pagan Lagrange Multiplier statistic

$$y_{it} = \beta' x_{it} + u_i + \epsilon_{it}, \ u_i \ and \ \epsilon_{it} \sim Normal \begin{bmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} \sigma_u^2 & 0 \\ 0 & \sigma_\epsilon^2 \end{bmatrix} \end{bmatrix}$$

$$H_0: \sigma_u^2 = 0$$

$$LM = \frac{(\Sigma_{i=1}^{N} T_{i})^{2}}{2\Sigma_{i=1}^{N} T_{i} (T_{i} - 1)} \left[\frac{\Sigma_{i=1}^{N} (T_{i} \overline{e}_{i})^{2}}{\Sigma_{i=1}^{N} \Sigma_{t=1}^{T} e_{it}^{2}} - 1 \right]^{2} \longrightarrow \chi^{2}[1]$$

Application: Cornwell-Rupert

```
least squares regression
 Ordinary
 LHS=LWAGE
                                          6.676346
               Mean
               Standard deviation
                                          .4615122
 Model size
               Parameters
               Degrees of freedom
                                              4158
 Residuals
               Sum of squares
                                          556.3030
               Standard error of e =
                                          .3657745
| Fit
               R-squared
                                          .3727592
               Adjusted R-squared
                                          .3718541
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
Constant
               5.66098218
                                 .04685914
                                             120.808
                                                        .0000
FEM
               -.39478212
                                 .02603413
                                             -15.164
                                                        .0000
                                                                   .11260504
ED
                                                        .0000
                 .05688005
                                 .00267743
                                              21.244
                                                                 12.8453782
OCC
               -.11220205
                                 .01464317
                                              -7.662
                                                        .0000
                                                                   .51116447
 SMSA
                 . 15504405
                                 .01233744
                                              12.567
                                                        .0000
                                                                   .65378151
MS
                 .09569050
                                 .02133490
                                               4.485
                                                        .0000
                                                                   . 8144 0576
EXP
                 .01043785
                                 .00054206
                                              19.256
                                                        .0000
                                                                 19.8537815
 Random Effects Model: v(i,t) = e(i,t) + u(i)
 Estimates:
             Var[e]
                                        .235368D-01
              Var[u]
                                        . 110254D+00
              Corr[v(i,t),v(i,s)] = 
                                        .824078
 Lagrange Multiplier Test vs. Model (3) = 3797.07
| (1 df, prob value = .000000)|
| (High values of LM favor FEM/REM over CR model.) |
Constant
                                 .07763394
                                              54.702
                                                        .0000
               4.24669585
FEM
                                                        .0000
               -.34715010
                                 .04681514
                                              -7.415
                                                                   .11260504
ED
                 . 11120152
                                 .00525209
                                              21.173
                                                        .0000
                                                                 12.8453782
OCC
               -.03908144
                                 .01298962
                                              -3.009
                                                        .0026
                                                                   .51116447
 SMSA
               -.03881553
                                 .01645862
                                              -2.358
                                                        .0184
                                                                   .65378151
                                              -3.612
MS
               -.06557030
                                 .01815465
                                                        .0003
                                                                   . 8 144 05 76
                                                                 19.8537815
EXP
                 .05737298
                                 .00088467
                                              64.852
                                                        .0000
```

Liopic of ancional Regression] 64/97

Hausman Test for FE vs. RE

		-
Estimator	Random Effects	Fixed Effects
	$E[c_i \mathbf{X}_i] = 0$	$E[c_i \mathbf{X}_i] \neq 0$
FGLS	Consistent and	Inconsistent
(Random Effects)	Efficient	
LSDV	Consistent	Consistent
(Fixed Effects)	Inefficient	Possibly Efficient

Computing the Hausman Statistic

$$\text{Est.Var}[\hat{\boldsymbol{\beta}}_{\text{FE}}] = \hat{\sigma}_{\epsilon}^{2} \left[\Sigma_{i=1}^{N} \boldsymbol{X}_{i}' \left(\boldsymbol{I} - \frac{1}{T_{i}} \boldsymbol{i} \boldsymbol{i}' \right) \boldsymbol{X}_{i} \right]^{-1}$$

Est. Var
$$[\hat{\boldsymbol{\beta}}_{RE}] = \hat{\sigma}_{\epsilon}^{2} \left[\sum_{i=1}^{N} \mathbf{X}_{i}' \left(\mathbf{I} - \frac{\hat{\gamma}_{i}}{T_{i}} \mathbf{i} \mathbf{i}' \right) \mathbf{X}_{i} \right]^{-1}, 0 \leq \hat{\gamma}_{i} = \frac{T_{i} \hat{\sigma}_{u}^{2}}{\hat{\sigma}_{\epsilon}^{2} + T_{i} \hat{\sigma}_{u}^{2}} \leq 1$$

As long as $\hat{\sigma}_{\varepsilon}^2$ and $\hat{\sigma}_{\Pi}^2$ are consistent, as $N \to \infty$, Est. $Var[\hat{\beta}_{FE}] - Est. Var[\hat{\beta}_{RE}]$ will be nonnegative definite. In a finite sample, to ensure this, both must be computed using the same estimate of $\hat{\sigma}_{\epsilon}^2$. The one based on LSDV will generally be the better choice.

Note that columns of zeros will appear in Est. $Var[\beta_{FF}]$ if there are time invariant variables in X.

β does not contain the constant term in the preceding.

Hausman Test

```
Random Effects Model: v(i,t) = e(i,t) + u(i)

Estimates: Var[e] = .235368D-01

Var[u] = .110254D+00

Corr[v(i,t),v(i,s)] = .824078

Lagrange Multiplier Test vs. Model (3) = 3797.07

( 1 df, prob value = .000000)

(High values of LM favor FEM/REM over CR model.)

Fixed vs. Random Effects (Hausman) = 2632.34

( 4 df, prob value = .000000)

(High (low) values of H favor FEM (REM).)
```

Variable Addition

A Fixed Effects Model

$$y_{it} = \alpha_i + \beta' x_{it} + \varepsilon_{it}$$

LSDV estimator - Deviations from group means:

To estimate β , regress $(y_{it} - \overline{y}_i)$ on $(\mathbf{x}_{it} - \overline{\mathbf{x}}_i)$

Algebraic equivalent: OLS regress y_{it} on $(\mathbf{x}_{it}, \overline{\mathbf{x}}_{i})$

Mundlak interpretation: $\alpha_i = \alpha + \delta' \overline{\mathbf{x}}_i + \mathbf{u}_i$ Model becomes $y_{it} = \alpha + \delta' \overline{\mathbf{x}}_i + u_i + \beta' \mathbf{x}_{it} + \varepsilon_{it}$ $= \alpha + \delta' \overline{\mathbf{x}}_{i} + \beta' \mathbf{x}_{it} + \varepsilon_{it} + \mathbf{u}_{i}$

= a random effects model with the group means.

Estimate by FGLS.

A Variable Addition Test

- Asymptotic equivalent to Hausman
- Also equivalent to Mundlak formulation
- In the random effects model, using FGLS
 - Only applies to time varying variables
 - Add expanded group means to the regression

 (i.e., observation i,t gets same group means for all t.
 - Use Wald test to test for coefficients on means equal to 0. Large chi-squared weighs against random effects specification.

Fixed Effects

```
Panel:Groups
               Empty
                           0, Valid data
                                              595
               Smallest
                           7,
                                Largest
               Average group size
                                              7.00
 There are 3 vars. with no within group variation.
 ED
          BLK
                  FEM
 Look for huge standard errors and fixed parameters.
 F.E. results are based on a generalized inverse.
 They will be highly erratic. (Problematic model.)
 Unable to compute std.errors for dummy var. coeffs.
                      | Standard Error | b/St.Er. | P[ | Z | >z] | Mean of X |
|Variable | Coefficient
                                                          46.811525
WKS
              .00083
                             .00060003 1.381
                                                  .1672
OCC
            -.02157
                                         -1.564 .1178
                             .01379216
                                                           .5111645
                                       1.221 .2219 .3954382
IND
             .01888
                             .01545450
                                            .011 .9909 .2902761
SOUTH
             .00039
                             .03429053
                             .01939659 -2.295 .0217 .6537815
SMSA
             -.04451**
                             .01493217 2.192 .0283 .3639856
UNION
              .03274**
EXP
              .11327***
                             .00247221
                                      45.819 .0000
                                                          19.853782
EXPSQ
             -.00042***
                           .546283D-04
                                          -7.664
                                                 .0000
                                                          514.40504
               .000
                          .....(Fixed Parameter)......
ED
                          .....(Fixed Parameter).....
BLK
               .000
FEM
                .000
                          .....(Fixed Parameter).....
```

Random Effects

```
Random Effects Model: v(i,t) = e(i,t) + u(i)
 Estimates:
             Var[e]
                                  = .235368D-01
             Var[u]
                                  = .110254D+00
             Corr[v(i,t),v(i,s)] = .824078
 Lagrange Multiplier Test vs. Model (3) = 3797.07
 ( 1 df, prob value = .000000)
 (High values of LM favor FEM/REM over CR model.)
|Variable | Coefficient | Standard Error |b/St.Er. |P[|Z|>z] | Mean of X |
WKS
               .00094
                                .00059308
                                              1.586
                                                       .1128
                                                               46.811525
OCC
              -.04367***
                                .01299206
                                             -3.361
                                                       .0008
                                                                .5111645
IND
               .00271
                                               .197
                                                       .8434
                                                                .3954382
                                .01373256
SOUTH
              -.00664
                                              -.295
                                                       .7677
                                                                .2902761
                                .02246416
                                                                .6537815
SMSA
              -.03117*
                                             -1.930
                                                       .0536
                                .01615455
               .05802***
                                              4.298
                                                       .0000
                                                                .3639856
UNION
                                .01349982
EXP
               .08744***
                                                       .0000
                                                               19.853782
                                .00224705
                                             38.913
EXPSQ
              -.00076***
                              .495876D-04
                                            -15.411
                                                       .0000
                                                               514.40504
                                             20.967
                                                               12.845378
ED
               .10724***
                                .00511463
                                                       .0000
BLK
              -.21178***
                                .05252013
                                            -4.032
                                                       .0001
                                                                .0722689
FEM
                                                       .0000
              -.24786***
                                .04283536
                                            -5.786
                                                                .1126050
              3.97756***
                                .08178139
                                             48.637
                                                       .0000
Constant
```

The Hausman Test, by Hand

```
--> matrix; br=b(1:8); vr=varb(1:8,1:8)$
--> matrix ; db = bf - br ; dv = vf - vr $
--> matrix ; list ; h =db'<dv>db$
Matrix H has 1 rows and 1 columns.
      1 | 2523.64910
--> calc; list; ctb(.95,8)$
Listed Calculator Results
Result = 15.507313
```

Means Added to REM - Mundlak

++ Variable	Coefficient	Standard Error	++ b/St.Er.	P[Z >z]	Mean of X
+ WKS	.00083	.00060070	1.380	.1677	46.811525
occ	02157	.01380769	-1.562	.1182	.5111645
IND	.01888	.01547189	1.220	.2224	.3954382
SOUTH	.00039	.03432914	.011	.9909	.2902761
SMSA	04451**	.01941842	-2.292	.0219	.6537815
UNION	.03274**	.01494898	2.190	.0285	.3639856
EXP	.11327***	.00247500	45.768	.0000	19.853782
EXPSQ	00042***	.546898D-04	-7.655	.0000	514.40504
ED	.05199***	.00552893	9.404	.0000	12.845378
BLK	16983***	.04456572	-3.811	.0001	.0722689
FEM	41306***	.03732204	-11.067	.0000	.1126050
WKSB	.00863**	.00363907	2.371	.0177	46.811525
OCCB	14656***	.03640885	-4.025	.0001	.5111645
INDB	.04142	.02976363	1.392	.1640	.3954382
SOUTHB	05551	.04297816	-1.292	.1965	.2902761
SMSAB	.21607***	.03213205	6.724	.0000	.6537815
UNIONB	.08152**	.03266438	2.496	.0126	.3639856
EXPB	08005***	.00533603	-15.002	.0000	19.853782
EXPSQB	00017	.00011763	-1.416	.1567	514.40504
Constant	5.19036***	.20147201	25.762	.0000	l

[Topic 3-Panel Data Regression] 73/97

Wu (Variable Addition) Test

A Hierarchical Linear Model Interpretation of the FE Model

$$\begin{aligned} y_{it} &= & \mathbf{x} \boldsymbol{\beta} (\ + \boldsymbol{\phi} \boldsymbol{e} \boldsymbol{s}_{it} \boldsymbol{n} \boldsymbol{\sigma} \boldsymbol{t} \ contain \ a \ constant) \\ & & E[\epsilon_{it} | \boldsymbol{X}_i, c_i] = 0, \ Var[\epsilon_{it} | \boldsymbol{X}_i, c_i] = \sigma_\epsilon^2 \\ c_i &= \alpha + \boldsymbol{z} \boldsymbol{\delta} + u_i, \\ & & E[u_i | \boldsymbol{z}_i'] = 0, \ Var[u_i | \boldsymbol{z}_i'] = \sigma_u^2 \\ y_{it} &= & \boldsymbol{x} \boldsymbol{\beta} + [\alpha + \boldsymbol{z} \boldsymbol{\delta} + u_i] + u_i \end{aligned}$$

Hierarchical Linear Model as REM

```
Random Effects Model: v(i,t) = e(i,t) + u(i)
 Estimates:
                                    .235368D-01
             Var[e]
             Var[u]
                                  = .110254D+00
             Corr[v(i,t),v(i,s)] = .824078
             Sigma(u)
                                  = 0.3303
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
                                                     .0026
                                                              .51116447
OCC
             -.03908144
                               .01298962
                                            -3.009
             -.03881553
                               .01645862
                                            -2.358
                                                     .0184
                                                              .65378151
SMSA
             -.06557030
                               .01815465
                                            -3.612
                                                     .0003
                                                              .81440576
MS
                                                     .0000
EXP
              .05737298
                               .00088467
                                           64.852
                                                             19.8537815
FEM
             -.34715010
                               .04681514
                                            -7.415
                                                     .0000
                                                              .11260504
                                            21.173
                                                     .0000
              .11120152
                               .00525209
                                                             12.8453782
ED
             4.24669585
                               .07763394
                                            54.702
                                                     .0000
Constant
```

Evolution: Correlated Random Effects

Unknown parameters

$$\mathbf{y}_{it} = \mathbf{\alpha}_i + \mathbf{\beta}' \mathbf{x}_{it} + \mathbf{\varepsilon}_{it}, \quad \Theta = [\alpha_1, \alpha_2, ..., \alpha_N, \beta, \sigma_{\varepsilon}^2]$$

Standard estimation based on LS (dummy variables)

Ambiguous definition of the distribution of y_{it}

Effects model, nonorthogonality, heterogeneity

$$y_{it} = \alpha_i + \beta' \mathbf{x}_{it} + \varepsilon_{it}, \quad E[\alpha_i \mid \mathbf{X}_i] = g(\mathbf{X}_i) \neq 0$$

Contrast to random effects $E[\alpha_i | X_i] = \alpha$

Standard estimation (still) based on LS (dummy variables)

Correlated random effects, more detailed model

$$\mathbf{y}_{it} = \mathbf{\alpha}_i + \mathbf{\beta}' \mathbf{x}_{it} + \mathbf{\varepsilon}_{it}, \ P[\mathbf{\alpha}_i \mid \mathbf{X}_i] = g(\mathbf{X}_i) \neq 0$$

Linear projection? $\alpha_i = \theta' \mathbf{x}_i + \mathbf{u}_i \quad \text{Cor}(\mathbf{u}_i, \mathbf{x}_i) = 0$

Mundlak's Estimator

Mundlak, Y., "On the Pooling of Time Series and Cross Section Data, Econometrica, 46, 1978, pp. 69-85.

Write
$$c_i = \overline{\mathbf{x}} \mathbf{\delta} + u_i$$
, $E[c_i | \mathbf{x}_{i1}, \mathbf{x}_{i1}, ... \mathbf{x}_{iT_i}] = \overline{\mathbf{x}} \mathbf{\delta}$

Assume c, contains all time invariant information

$$\mathbf{y}_{i} = \mathbf{\beta} \mathbf{K}_{i} + \mathbf{E} \mathbf{E} + \mathbf{I}_{i}$$
, \mathbf{T}_{i} observations in group i
= $\mathbf{X} \mathbf{\beta} + i \mathbf{x} \mathbf{\delta} + \mathbf{E}_{i} + \mathbf{u} \mathbf{i}$

Looks like random effects.

$$Var[\mathbf{\varepsilon}_{i} + u_{i}] = \mathbf{\Omega}_{i} + \mathbf{\sigma}_{u}^{2}ii'$$

This is the model we used for the Wu test.

Correlated Random Effects

Mundlak

$$C_i = \overline{\mathbf{x}} \delta + u_i, \quad E[C_i | \mathbf{x}_{i1}, \mathbf{x}_{i1}, ... \mathbf{x}_{iT_i}] = \overline{\mathbf{x}} \delta$$

Assume c_i contains all time invariant information

$$\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{c}_i \mathbf{i} + \mathbf{\varepsilon}_i$$
, \mathbf{T}_i observations in group i
= $\mathbf{X} \mathbf{\beta} + \mathbf{i} \mathbf{\overline{X}} \mathbf{\delta} + \mathbf{\varepsilon}_i + \mathbf{u} \mathbf{i}$

Chamberlain / Wooldridge

$$\begin{aligned} \mathbf{c}_{i} &= \mathbf{x} \mathbf{\delta}_{-1} + \mathbf{x}_{-i2}^{\prime} \mathbf{\delta}_{2} + \ldots + \mathbf{x} \mathbf{\delta}_{-T}^{\prime} + \mathbf{u}_{i} \\ \mathbf{y}_{i} &= \mathbf{\beta} \mathbf{K}_{i} \quad \mathbf{i} \mathbf{x} \quad \mathbf{\delta}_{i1-1}^{\prime} \mathbf{i} \mathbf{x} \quad \mathbf{\delta}_{i1-2}^{\prime} + \ldots \mathbf{i} \mathbf{x} \quad \mathbf{\delta}_{iT-T}^{\prime} \mathbf{i} + \ \mathbf{u} \mathbf{E} \mathbf{F}_{-i}^{\prime} \\ &= \mathbf{T} \mathbf{x} \mathbf{K}_{i} + \mathbf{T} \mathbf{x} \mathbf{K}_{i}^{\prime} + \mathbf{T} \mathbf{x} \mathbf{K}_{i}^{\prime} + \mathbf{T} \mathbf{x} \mathbf{K}_{i}^{\prime} + \mathbf{E} \mathbf{C}_{i}^{\prime} \end{aligned}$$

Problems: Requires balanced panels

Modern panels have large T; models have large K

Mundlak's Approach for an FE Model with Time Invariant Variables

$$\begin{aligned} y_{it} &= \boldsymbol{x}\boldsymbol{\beta}, \, \boldsymbol{z} \, \boldsymbol{\delta} dees_i \, \boldsymbol{n}o_{it} \, \boldsymbol{c} \, \boldsymbol{s} n tain \, a \, constant) \\ & E[\epsilon_{it}|\mathbf{X}_i, c_i] = 0, \, Var[\epsilon_{it}|\mathbf{X}_i, c_i] = \sigma_\epsilon^2 \\ c_i &= \alpha + \, \overline{\mathbf{X}}\boldsymbol{\beta} + w_i, \\ & E[w_i|\mathbf{X}_i, \mathbf{z}_i] = 0, \, \, Var[w_i|\mathbf{X}_i, \mathbf{z}_i] = \sigma_w^2 \\ y_{it} &= \!\! \boldsymbol{\epsilon} \boldsymbol{\beta} \, + \!\! \mathbf{z} \, \boldsymbol{\delta} + \alpha + \!\! \mathbf{x} \, \boldsymbol{\delta} + w_i + it \end{aligned}$$

= random effects model including group means of time varying variables.

Mundlak Form of FE Model

```
|Variable | Coefficient | Standard Error | b/St.Er. | P[ | Z | >z] | Mean of X |
OCC
          -.02021384
                      .01375165 -1.470 .1416
                                             .51116447
          -.04250645 .01951727 -2.178 .0294 .65378151
SMSA
         -.02946444 .01915264 -1.538 .1240 .81440576
MS
                     .00119262 81.046 .0000 19.8537815
          .09665711
EXP
                  .05725632 -5.994 .0000 .11260504
FEM
          -.34322129
                  .00575551 8.861
          .05099781
                                       .0000 12.8453782
ED
Constant |
          5.72655261
                  .10300460 55.595 .0000
                     .03635921 -2.984 .0028 .51116447
OCCB
          -.10850252
SMSAB
          .22934020
                      .03282197 6.987 .0000
                                             .65378151
                      .05329948 3.837 .0001 .81440576
MSB
           .20453332
EXPB
          -.08988632
                      .00165025
                               -54,468
                                       .0000
                                             19.8537815
Var[e]
        .0235632
         .0773825
  Var[u]
```


Panel Data Extensions

- Dynamic models: lagged effects of the dependent variable
- Endogenous RHS variables
- Cross country comparisons— large T
- More general parameter heterogeneity not only the constant term
- Nonlinear models such as binary choice

The Hausman and Taylor Model

$$y_{it} = x1\beta_1 + x2\beta_2 + z1\phi_1 + z2\phi_2 + \epsilon_{it} + u_i$$

Model: **x2** and **z2** are correlated with u.

Deviations from group means removes all time invariant variables

$$y_{it} - \overline{y}_i = (\mathbf{x} \mathbf{1}_{it} - \overline{\mathbf{x} \boldsymbol{\beta}}_i)' \mathbf{x} \mathbf{2} (-\mathbf{x} \mathbf{2} \overline{\boldsymbol{\beta}}_i) \mathbf{1} \mathbf{x} \mathbf{2} (-\mathbf{x} \mathbf{2} \overline{\boldsymbol{\beta}}_i)$$

Implication: β_1 , β_2 are consistently estimated by LSDV.

$$(\mathbf{x1}_{it} - \mathbf{x1}_i) = K_1$$
 instrumental variables

$$(\mathbf{x2_{it}} - \mathbf{x2_i}) = K_2$$
 instrumental variables

$$z1_i$$
 = L_1 instrumental variables (uncorrelated with u)

? =
$$L_2$$
 instrumental variables (where do we get them?)

H&T: $\mathbf{x1_i} = K_1$ additional instrumental variables. Needs $K_1 \ge L_2$.

H&T's 4 Step FGLS Estimator

- (1) LSDV estimates of β_1 , β_2 , σ_{ϵ}^2
- $(2) (\mathbf{e}^*)^{\bullet} = (\overline{e}_1, \overline{e}_1, \dots, \overline{e}_1), (\overline{e}_2, \overline{e}_2, \dots, \overline{e}_2), \dots, (\overline{e}_N, \overline{e}_N, \dots, \overline{e}_N)$ IV regression of **e** * on **Z** * with instruments **W**_i **a**onsist**e**ntly estimates ₁ and ₂.
- (3) With fixed T, residual variance in (2) estimates $\sigma_{11}^2 + \sigma_{c}^2$ / T With unbalanced panel, it estimates $\sigma_{11}^2 + \sigma_{5}^2 (1/T)$ or something resembling this. (1) provided an estimate of σ_{ϵ}^2 so use the two to obtain estimates of σ_{μ}^2 and σ_{ϵ}^2 . For each group, compute

$$\hat{\theta}_{i} = 1 - \sqrt{\hat{\sigma}_{\epsilon}^{2} / (\hat{\sigma}_{\epsilon}^{2} + T_{i}\hat{\sigma}_{u}^{2})}$$

(4) Transform $[\mathbf{x}_{i+1}, \mathbf{x}_{i+2}, \mathbf{z}_{i1}, \mathbf{z}_{i2}]$ to

$$\bm{W_i}^* = [\bm{x_{it1}}, \bm{x_{it2}}, \bm{z_{i1}}, \bm{z_{i2}}] - \hat{\theta}_i[\overline{\bm{x}_{i1}}, \overline{\bm{x}_{i2}}, \bm{z_{i1}}, \bm{z_{i2}}]$$

and
$$y_{it}$$
 to $y_{it}^* = y_{it} - \hat{\theta}_i \overline{y}_i$.

H&T's 4 STEP IV Estimator

Instrumental Variables V_i =

$$(x1_{it} - x1_i) = K_1$$
 instrumental variables

$$(\mathbf{x2_{it}} - \mathbf{x2_i}) = K_2$$
 instrumental variables

$$z1_i$$
 = L_1 instrumental variables (uncorrelated with u)

$$\overline{\mathbf{x1}}_{i}$$
 = K_1 additional instrumental variables.

Now do 2SLS of **y** * on **W** * with instruments **V** to estimate all parameters. I.e.,

$$[\beta_1, \beta_2, \alpha_1, \alpha_2] = (\hat{W} *' \hat{W} *)^{-1} \hat{W} *' y *.$$

TABLE 13.3		Estimated Log Wage Equations					
	Variables	OLS	GLS/RE	LSDV	HT/IV-GLS	HT/IV-GLS	
\mathbf{x}_1	Experience	0.0132 (0.0011) ^a	0.0133 (0.0017)	0.0241 (0.0042)	0.0217 (0.0031)		
	Bad health	-0.0843 (0.0412)	-0.0300 (0.0363)	-0.0388 (0.0460)	-0.0278 (0.0307)	-0.0388 (0.0348)	
	Unemployed Last Year	-0.0015 (0.0267)	-0.0402 (0.0207)	-0.0560 (0.0295)	-0.0559 (0.0246)		
\mathbf{x}_2	Time Experience	NR^b	NR	NR	NR	NR 0.0241	
	Unemployed					(0.0045) -0.0560 (0.0279)	
\mathbf{z}_1	Race	-0.0853 (0.0328)	-0.0878 (0.0518)		-0.0278 (0.0752)	-0.0175 (0.0764)	
	Union	0.0450 (0.0191)	0.0374 (0.0296)		0.1227 (0.0473)	0.2240 (0.2863)	
	Schooling	0.0669 (0.0033)	0.0676 (0.0052)		(0.0473)	(0.2003)	
\mathbf{z}_2	Constant Schooling	NR	NR	NR	NR 0.1246 (0.0434)	NR 0.2169 (0.0979)	
	σ_{ϵ} $\rho = \sqrt{\sigma_{u}^{2}/(\sigma_{u}^{2} + \sigma_{u}^{2})}$ Spec. Test [3]	0.321 $+ \sigma_{\varepsilon}^{2})$	0.192 0.632 20.2	0.160	0.190 0.661 2.24	0.629 0.817 0.00	

^aEstimated asymptotic standard errors are given in parentheses.

bNR indicates that the coefficient estimate was not reported in the study.

[10010 3-Fallel Data Reglession] 00/7/

Arellano/Bond/Bover's Formulation Builds on Hausman and Taylor

$$\begin{split} y_{it} &= \textbf{x} \textbf{1} \boldsymbol{\beta}_{1} + \textbf{x} \textbf{2} \boldsymbol{\beta}_{2} + \textbf{z} \textbf{1} \boldsymbol{\phi}_{1} + \textbf{z} \textbf{2} \boldsymbol{\phi}_{2} + \epsilon_{it} + u_{i} \\ \text{Instrumental variables for period t} \\ &(\textbf{x} \textbf{1}_{it} - \overline{\textbf{x} \textbf{1}}_{i}) = K_{1} \text{ instrumental variables} \\ &(\textbf{x} \textbf{2}_{it} - \overline{\textbf{x} \textbf{2}}_{i}) = K_{2} \text{ instrumental variables} \\ &\textbf{z} \textbf{1}_{i} = L_{1} \text{ instrumental variables (uncorrelated with u)} \\ &\overline{\textbf{x} \textbf{1}}_{i} = K_{1} \text{ additional instrumental variables.} \quad K_{1} \geq L_{2}. \\ \text{Let } v_{it} = \epsilon_{it} + u_{i} \\ \text{Let } \textbf{z}_{it}' = [(\textbf{x} \textbf{1}_{it} - \overline{\textbf{x} \textbf{1}}_{i})', (\textbf{x} \textbf{2}_{it} - \overline{\textbf{x} \textbf{2}}_{i})', \textbf{z} \textbf{1}_{i}', \overline{\textbf{x} \textbf{1}}'] \\ \text{Then } E[\textbf{z}_{it} v_{it}] = \textbf{0} \end{split}$$

We formulate this for the T_i observations in group i.

Arellano/Bond/Bover's Formulation Adds a Lagged DV to H&T

2 The Carlotte State of the Land of the La

$$y_{it} = \delta y_{i,t-1} + x \mathbf{1} \beta_1 + x \mathbf{2} \beta_2 + z \mathbf{1} \phi_1 + z \mathbf{2} \phi_2 + \varepsilon_{it} + u_i$$
Parameters $\theta = [\beta, \beta, \alpha, \alpha]$
The data

$$\mathbf{y_{i}} = \begin{bmatrix} y_{i,2} \\ y_{i,3} \\ \vdots \\ y_{i,T_{i}} \end{bmatrix}, \ \mathbf{X_{i}} = \begin{bmatrix} y_{i,1} & \mathbf{x1'_{i2}} & \mathbf{x2'_{i2}} & \mathbf{z1'_{i}} & \mathbf{z2'_{i}} \\ y_{i,2} & \mathbf{x1'_{i3}} & \mathbf{x2'_{i3}} & \mathbf{z1'_{i}} & \mathbf{z2'_{i}} \\ y_{i,T-1} & \mathbf{x1'_{iT_{i}}} & \mathbf{x2'_{iT_{i}}} & \mathbf{z1'_{i}} & \mathbf{z2'_{i}} \end{bmatrix}, \ T_{i}-1 \ rows$$

$$1 \quad K1 \quad K2 \quad L1 \quad L2 \quad columns$$

This formulation is the same as H&T with $y_{i,t-1}$ contained in $x2_{it}$.

Dynamic (Linear) Panel Data (DPD) Models

- **Application**
- Bias in Conventional Estimation
- Development of Consistent Estimators
- Efficient GMM Estimators

Dynamic Linear Model

Balestra-Nerlove (1966), 36 States, 11 Years

Demand for Natural Gas

Structure

New Demand: $G_{i,t}^* = G_{i,t} - (1 - \delta)G_{i,t-1}$

Demand Function $G_{i,t}^* = \beta_1 + \beta_2 P_{i,t} + \beta_3 \Delta N_{i,t} + \beta_4 N_{i,t} + \beta_5 \Delta Y_{i,t} + \beta_6 Y_{i,t} + \epsilon_{i,t}$

G=gas demand

N = population

P = price

Y = per capita income

Reduced Form

$$G_{i,t} = \beta_1 + \beta_2 P_{i,t} + \beta_3 \Delta N_{i,t} + \beta_4 N_{i,t} + \beta_5 \Delta Y_{i,t} + \beta_6 Y_{i,t} + \beta_7 G_{i,t-1} + \alpha_i + \epsilon_{i,t}$$

A General DPD model

No correlation across individuals

OLS and GLS are both inconsistent.

Arellano and Bond Estimator

Base on first differences

$$y_{i,t} - y_{i,t-1} = (\mathbf{x}_{i,t} \; \boldsymbol{\beta} \; \mathbf{x}_{i,t-1})^{\text{\tiny{1}}} \; + \delta(y_{i,t-1} - y_{i,t-2}) + (\epsilon_{i,t} - \epsilon_{i,t-1})$$

Instrumental variables

$$y_{i,3} - y_{i,2} = (\mathbf{x}_{i,3} \mathbf{\beta} \mathbf{x}_{i,2})^{\bullet} + \delta(y_{i,2} - y_{i,1}) + (\varepsilon_{i,3} - \varepsilon_{i,2})$$

Can use y_{i1}

$$y_{i,4} - y_{i,3} = (\mathbf{x}_{i,4} \mathbf{\beta} \mathbf{x}_{i,3})^{*} + \delta(y_{i,3} - y_{i,2}) + (\epsilon_{i,4} - \epsilon_{i,3})$$

Can use $y_{i,1}$ and $y_{i,2}$

$$y_{i,5} - y_{i,4} = (\mathbf{x}_{i,5} \mathbf{\beta} \mathbf{x}_{i,4})^{\text{T}} + \delta(y_{i,4} - y_{i,3}) + (\epsilon_{i,5} - \epsilon_{i,4})$$

Can use $y_{i,1}$ and y_{i2} and $y_{i,3}$

Arellano and Bond Estimator

More instrumental variables - Predetermined X

$$y_{i,3} - y_{i,2} = (\mathbf{x}_{i,3} \mathbf{\beta} \mathbf{x}_{i,2})' + \delta(y_{i,2} - y_{i,1}) + (\epsilon_{i,3} - \epsilon_{i,2})$$

Can use y_{i1} and $\mathbf{x}_{i,1}$, $\mathbf{x}_{i,2}$

$$y_{i,4} - y_{i,3} = (\mathbf{x}_{i,4} \mathbf{\beta} \mathbf{x}_{i,3})' + \delta(y_{i,3} - y_{i,2}) + (\epsilon_{i,4} - \epsilon_{i,3})$$

Can use $y_{i,1}, y_{i,2}, \mathbf{x}_{i,1}, \mathbf{x}_{i,2}, \mathbf{x}_{i,3}$

$$y_{i,5} - y_{i,4} = (\mathbf{x}_{i,5} \mathbf{\beta} \mathbf{x}_{i,4})^{\bullet} + \delta(y_{i,4} - y_{i,3}) + (\varepsilon_{i,5} - \varepsilon_{i,4})$$

Can use $y_{i1}, y_{i2}, y_{i3}, \mathbf{x}_{i1}, \mathbf{x}_{i2}, \mathbf{x}_{i3}, \mathbf{x}_{i4}$

Arellano and Bond Estimator

Even more instrumental variables - Strictly exogenous X

$$y_{i,3} - y_{i,2} = (\mathbf{x}_{i,3} \, \mathbf{\beta} \, \mathbf{x}_{i,2})^{\text{\tiny{I}}} + \delta(y_{i,2} - y_{i,1}) + (\epsilon_{i,3} - \epsilon_{i,2})$$

Can use y_{i1} and $\mathbf{x}_{i,1}$, $\mathbf{x}_{i,2}$, ..., $\mathbf{x}_{i,T}$ (all periods)

$$y_{i,4} - y_{i,3} = (\mathbf{x}_{i,4} \mathbf{\beta} \mathbf{x}_{i,3})^{\text{T}} + \delta(y_{i,3} - y_{i,2}) + (\epsilon_{i,4} - \epsilon_{i,3})$$

Can use $y_{i,1}, y_{i2}, \mathbf{x}_{i,1}, \mathbf{x}_{i,2}, ..., \mathbf{x}_{i,T}$

$$y_{i,5} - y_{i,4} = (\mathbf{x}_{i,5} \mathbf{\beta} \mathbf{x}_{i,4})' + \delta(y_{i,4} - y_{i,3}) + (\varepsilon_{i,5} - \varepsilon_{i,4})$$

Can use $y_{i,1}$, y_{i2} , $y_{i,3}$, $\mathbf{x}_{i,1}$, $\mathbf{x}_{i,2}$, ..., $\mathbf{x}_{i,T}$

The number of potential instruments is huge.

These define the rows of $\mathbf{Z_i}$. These can be used for simple instrumental variable estimation.

Application: Maquiladora

The U.S. and Mexico: Are We Still Connected? Federal Reserve Bank of Dallas, El Paso Branch Network of Border Economics (Red de la Economía Fronteriza) Centro de Investigación y Docencia Económicas A.C. Houston, Texas. November 18, 2005

Maguila: volatility and Mexico-US economic integration

Gustavo Félix Verduzco Centro de Investigaciones Socioeconómicas Universidad Autónoma de Coahuila gfelix@cise.uadec.mx

Maquiladora

Model: Labor Demand in Maquila Industry

Dynamic Panel Data:

$$Ltrab_{it} = \alpha_0 + \alpha_1 Ltrab_{i(t-1)} + \alpha_2 Ltrab_{i(t-2)} + \beta_1 Ltppd_{it} + \beta_2 Lpibusa_{it} + v_i + u_{it}$$

t= 1990.1 - 2005.3 quarterly

i = The Following 13 States where maguila mainly operates: Baja California, Sonora, Chihuahua, Coahuila, Nuevo León, Tamaulipas, Durango, Aguascalientes, Jalisco, Guanajuato, Mexico-DF, Puebla y Yucatán.

Variables:

Ltrab= log of maquila employment

Lrppd = wage per worker in dollars

Lpibusa = log of: USA GDP (2000 prices) over distance

Estimates

```
Model: Labor Demand in Maquila Industry
Arellano-Bond dynamic panel-data estimation
                                            Number of obs
                                                                     695
                                            Number of groups =
Group variable (i): estado
                                                                  13
                                            Wald chi2(4)
                                                             = 18500.45
Time variable (t): trim
                                            Obs per group: min =
                                                          avg = 53.46154
                                                          max =
One-step results
                  Coef. Std. Err. z
                                            P>|z| [95% Conf. Interval]
ltrab
                                            0.000
        LD | 1.220175 .0362107 33.70
                                                   1.149204
                                                                1.291147
        L2D | -.262198 .0355168
                                  -7.38 0.000
                                                   -.3318095 -.1925864
lrppd
         D1 | -.0804483 .0115187
                                  -6.98 0.000
                                                   -.1030246 -.0578721
lpibusa
         D1 | .4801248 .1643802
                                  2.92 0.003
                                                   .1579454
                                                               .8023041
            | -.0023032 .0012531
                                  -1.84 0.066
                                                    -.0047592
                                                                .0001528
Sargan test of over-identifying restrictions:
        chi2(1827) = 695.25  Prob > chi2 = 1.0000
Arellano-Bond test that average autocovariance in residuals of order 1 is 0:
        H0: no autocorrelation z = -13.42 Pr > z = 0.0000
Arellano-Bond test that average autocovariance in residuals of order 2 is 0:
   H0: no autocorrelation z = -1.30 Pr > z = 0.1927
```