Asset Pricing with Heterogeneous Consumers

Constantinides & Duffie, JPE 1996
Presented by: Rustom Irani, NYU Stern

November 16, 2009
Outline

1. Introduction
 - Motivation
 - Contribution

2. Model
 - Assumptions
 - Equilibrium

3. Results
 - Mechanism
 - Empirical Implications of Idiosyncratic Risk

4. Conclusion

5. Discussion
Outline

1. **Introduction**
 - Motivation
 - Contribution

2. **Model**
 - Assumptions
 - Equilibrium

3. **Results**
 - Mechanism
 - Empirical Implications of Idiosyncratic Risk

4. **Conclusion**

5. **Discussion**
Representative Agent Consumption-Based Asset Pricing

- Breeden-Lucas consumption-CAPM model:
 1. Complete markets;
 2. No trading frictions;
 3. Time-additive utility.

- Aggregate consumption growth only priced factor:
 - Fluctuations too small in data!

- Euler equation estimation (Hansen & Singleton, 1982):
 - Unreasonably high RRA required to deliver empirical average excess returns;
 - “Equity-premium puzzle.”
Representative Agent Consumption-Based Asset Pricing

- Breeden-Lucas consumption-CAPM model:
 1. Complete markets;
 2. No trading frictions;
 3. Time-additive utility.

- Aggregate consumption growth only priced factor:
 - Fluctuations too small in data!

- Euler equation estimation (Hansen & Singleton, 1982):
 - Unreasonably high RRA required to deliver empirical average excess returns;
 - “Equity-premium puzzle.”

...Could relaxing the complete markets assumption help?
What does Market Incompleteness mean?

- Agents are unable to insure against risks they face:
 - Earnings, health, investments, etc.;
 - Asymmetric information or limited enforcement of contracts...
- Complete markets require all state-contingent contracts may be exchanged;
- However, observe very few insurance mechanisms;
- Models we consider have *exogenously* incomplete markets:
 - Model markets and institutions as we see them (e.g., stocks & bonds, social security, health insurance, etc.);
 - Don’t attempt to micro-founded.
Relaxing full consumption insurance promising:
- Individual consumption growth is much more volatile than aggregate consumption growth;
- Can this be exploited to get asset pricing right?

Key insights:
1. If individual and aggregate consumption risk vary systematically, then individual risk impacts equity premium;
2. Persistence and heteroscedasticity of shocks matters;

This paper: Uninsurable earnings risk might matter.
Main Contribution

- Closed-form solutions in presence of uninsurable earnings risk:
 - X-sectional distribution of consumption growth matters!
 - Misspecification of Euler equation;
 - Implications for risk-return relationship;
- Particular earnings process **constructed** s.t. equilibrium pricing kernel depends on x-sectional distn. of consumption;
 - “Back-solving” (Sims, JBES, 1990);
- Conversely, a class of models is identified in which market incompleteness is irrelevant:
 - If x-sectional variance of consumption growth is orthogonal to returns then incompleteness irrelevant and Breeden-Lucas CCAPM can be used for asset pricing;
 - Krueger & Lustig (JET, 2009) extends this class.
Outline

1. Introduction
 - Motivation
 - Contribution

2. Model
 - Assumptions
 - Equilibrium

3. Results
 - Mechanism
 - Empirical Implications of Idiosyncratic Risk

4. Conclusion

5. Discussion
Endowment economy;
2 Continuum of ex-ante identical, infinitely-lived consumers;
3 Finite set of securities available for trade:
 - Market incompleteness arises because cannot insure individual earnings risk using this set of securities!
Market Arrangement

At every time t:

1. n securities:
 - Net dividend d_{jt}, ex-dividend price P_{jt};
 - Each security in positive net supply;
 - Consumer i has holding θ_{ijt}.

2. T bonds:
 - Default-free discount bond, paying one unit of consumption;
 - Each bond in zero net supply;
 - Consumer i has holding b_{ijt}.
Consumer’s Problem

\[V_{i0} = \max_{\{\theta_{it}, b_{it}, C_{it}\}_{i,t}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} e^{-\rho t} \frac{C_{it}^{1-\alpha}}{1-\alpha} \right] \]

s.t. \quad C_{it} + \theta_{it} P_t + b_{it} B_t^T = I_{it} + \theta_{i,t-1} (P_t + d_t) + b_{i,t-1} B_{t-1}^T

- \(I_{it} \) is consumer \(i \)'s labor income endowment;
- Consumption + Savings = Nonfinancial + Financial Income.
Add up consumption, dividends and labor income:

1. \[C_t = \int_{i \in I} C_{it}; \]
2. \[D_t = \sum_{j=1}^{n} d_{jt}; \]
3. \[l_t = \int_{i \in I} l_{it} = C_t - D_t. \]
Income Process

- Let $M_t > 0$ be an SDF implied by no-arbitrage;
- Assume i’s labor endowment is as follows:

\[
I_{it} = \delta_{it} C_t - D_t
\]

s.t. \[\delta_{it} = \exp \left[\sum_{s=1}^{t} (\eta_{is} y_s - y_s^2 / 2) \right] \]

\[
y_t = \left(\frac{2}{\alpha^2 + \alpha} \left[\Delta m_t + \rho + \alpha \Delta c_t \right] \right)^{1/2}
\]

- IID multiplicative unit-root earnings shock $\eta_{it} \sim N(0,1)$.
An equilibrium is a value function, decision rules for the investor, and pricing functions \(\{V^*, C^*, \theta^*, b^*, P^*, B^*\} \) s.t.:

1. **Optimality:** Given \((P^*, B^*)\),
 - \((C^*, \theta^*, b^*)\) maximizes utility and \(V^*\) is associated value;

2. **Market Clearing:** \(\forall j, t\)
 - \(\int_{i \in I} \theta^*_{ijt} = 1\);
 - \(\int_{i \in I} b^*_{ijt} = 0\).
Outline

1. Introduction
 - Motivation
 - Contribution

2. Model
 - Assumptions
 - Equilibrium

3. Results
 - Mechanism
 - Empirical Implications of Idiosyncratic Risk

4. Conclusion

5. Discussion
An Equilibrium with Autarky

Under the maintained assumptions, if:

1. $E[M_t] \to 0$, as $t \to \infty$;
2. $M_{t+1}/M_t \geq e^{-\rho} (C_{t+1}/C_t)^{-\alpha}$;

then there exists an equilibrium with no trade.
An Equilibrium with Autarky

- Under the maintained assumptions, if:
 1. \(\mathbb{E} [M_t] \rightarrow 0 \), as \(t \rightarrow \infty \);
 2. \(M_{t+1}/M_t \geq e^{-\rho} (C_{t+1}/C_t)^{-\alpha} \);

 then there exists an equilibrium with no trade.

- Given any \((I_t, P_t, B_t)\) there exists \((I_{it})\) consistent with equilibrium concept!
- “No trade” means that agent consumes labor earnings each period and does not trade in financial markets:
 - This is unrealistic, but facilitates subsequent analysis;
 - Follows from (unusual) choice of earnings process.

An Equilibrium with Autarky

- Under the maintained assumptions, if:
 1. \(\mathbb{E} [M_t] \rightarrow 0 \), as \(t \rightarrow \infty \);
 2. \(M_{t+1}/M_t \geq e^{-\rho} (C_{t+1}/C_t)^{-\alpha} \);

 then there exists an equilibrium with no trade.

- Given any \((I_t, P_t, B_t)\) there exists \((I_{it})\) consistent with equilibrium concept!
- “No trade” means that agent consumes labor earnings each period and does not trade in financial markets:
 - This is unrealistic, but facilitates subsequent analysis;
 - Follows from (unusual) choice of earnings process.

An Equilibrium with Autarky

- Under the maintained assumptions, if:
 1. \(\mathbb{E} [M_t] \rightarrow 0 \), as \(t \rightarrow \infty \);
 2. \(M_{t+1}/M_t \geq e^{-\rho} (C_{t+1}/C_t)^{-\alpha} \);

 then there exists an equilibrium with no trade.

- Given any \((I_t, P_t, B_t)\) there exists \((I_{it})\) consistent with equilibrium concept!
- “No trade” means that agent consumes labor earnings each period and does not trade in financial markets:
 - This is unrealistic, but facilitates subsequent analysis;
 - Follows from (unusual) choice of earnings process.

An Equilibrium with Autarky

- Under the maintained assumptions, if:
 1. \(\mathbb{E} [M_t] \rightarrow 0 \), as \(t \rightarrow \infty \);
 2. \(M_{t+1}/M_t \geq e^{-\rho} (C_{t+1}/C_t)^{-\alpha} \);

 then there exists an equilibrium with no trade.

- Given any \((I_t, P_t, B_t)\) there exists \((I_{it})\) consistent with equilibrium concept!
- “No trade” means that agent consumes labor earnings each period and does not trade in financial markets:
 - This is unrealistic, but facilitates subsequent analysis;
 - Follows from (unusual) choice of earnings process.
In equilibrium, $C_{it} = \delta_{it} C_t$, hence:

$$\ln C^i_t = \ln C_t + \epsilon^i_t \quad \text{s.t.} \quad \epsilon^i_t = \sum_{s=1}^{t} (\eta^i_t y_s - \frac{y_s^2}{2})$$

Hence y^2_{t+1} corresponds to cross-sectional variance of consumption growth (conditional on the aggregate state):

$$\Var^{xs} \left[\ln \left(\frac{C^i_{t+1} / C^i_t}{C^i_{t+1} / C^i_t} \right) \mid C_{t+1}, y_{t+1} \right] = y^2_{t+1}$$
Use equilibrium consumption and EE to extract SDF:

\[1 = E_t \left[e^{-\rho} \left(\frac{C_{t+1}}{C_t} \right)^{-\alpha} R_{t+1}^j \right] \]

\[\Rightarrow 1 = E_t \left[e^{-\rho + \frac{1}{2} \alpha (1+\alpha) y_{t+1}^2} \left(\frac{C_{t+1}}{C_t} \right)^{-\alpha} R_{t+1}^j \right] \]

\[\Rightarrow M_{t+1} = e^{-\rho + \frac{1}{2} \alpha (1+\alpha) y_{t+1}^2} \left(\frac{C_{t+1}}{C_t} \right)^{-\alpha} \]

Notice that \(M_{t+1} \) is a function of the x-sectional distribution!
Euler Equation Estimation

\[M_{t+1} = e^{-\rho + \frac{1}{2} \alpha (1+\alpha) y_{t+1}^2} \left(\frac{C_{t+1}}{C_t} \right)^{-\alpha} \]

- In the presence of uninsurable idiosyncratic risk \(y_{t+1}^2 \neq 0 \), \(M_{t+1} = g\left(\frac{C_{t+1}}{C_t}, y_{t+1}^2 \right) \);
- Standard Euler equation \((M_{t+1} = f\left(\frac{C_{t+1}}{C_t} \right)) \) misspecified and estimates of the coefficient of RRA will be biased:
Risk-Return Relation

\[\mathbb{E}_t [R_{jt+1} - R_f] = \frac{-\text{Cov}_t [R_{jt+1}, M_{t+1}]}{\text{Var}_t [M_{t+1}]} \cdot \frac{\text{Var}_t [M_{t+1}]}{\mathbb{E}_t [M_{t+1}]} \]

- SDF suggests relationship between x-sectional distribution of nonfinancial income risk and asset risk/return:
 1. Time-series properties of \(y^2_{t+1} \) will affect market price of risk:
 - In particular, \(\uparrow y^2_t \) in bad times implies counter-cyclical MPR;
 - Counter-cyclical idiosyncratic labor income risk confirmed in STY (JPE, 2004);
 2. Returns that covary negatively with \(y^2_{t+1} \) will have higher \(\beta \) and risk premium.
Outline

1. Introduction
 - Motivation
 - Contribution

2. Model
 - Assumptions
 - Equilibrium

3. Results
 - Mechanism
 - Empirical Implications of Idiosyncratic Risk

4. Conclusion

5. Discussion
1. Asset pricing in an incomplete market endowment economy:
 - Very special example, but results generalize;

2. Modified Euler equation now depends on properties of idiosyncratic risk process:
 - Strong assumptions on income process;
 - No trade in financial markets in equilibrium;
 - Tractability, but at what cost?

3. Asset pricing implications for:
 - Euler equation estimation of preference parameters;
 - Risk/return relationship.
Outline

1 Introduction
 • Motivation
 • Contribution

2 Model
 • Assumptions
 • Equilibrium

3 Results
 • Mechanism
 • Empirical Implications of Idiosyncratic Risk

4 Conclusion

5 Discussion
 • Empirical Evidence: BCG (JPE, 2002)
Euler Equation Errors: Set Up

- Brav, Constantinides & Geczy (JPE, 2002) investigate EE errors using an incomplete markets SDF:

 1. CRRA SDF: \(M_{t+1}(g_{t+1}^i) = \beta(g_{t+1}^i)^{-\gamma} \), where \(g_{t+1}^i \equiv \frac{c_{t+1}^i}{c_t^i} \)

 2. Assume standard EE holds for every household and asset:

\[
1 = E_t \left[\beta(g_{t+1}^i)^{-\gamma} R_{t+1}^j \right] \quad \forall \ i, j
\]
Euler Equation Errors: Approach

- Under complete markets, HH’s fully insure and equalize their MRS state-by-state:
 - Consumption growth rates are equalized across HHs;
 - CCAPM holds, i.e., $M_{t+1} = \beta (g_{t+1})^{-\gamma}$ is a valid SDF;
 - We know this doesn’t work!

- With incomplete markets:
 - We do not have full insurance;
 - HHs do not equate MRS/consumption growth rates;

\[E \text{ Euler Equation Errors: Approach} \]
Euler Equation Errors: Approach

- Under complete markets, HH’s fully insure and equalize their MRS state-by-state:
 - Consumption growth rates are equalized across HHs;
 - CCAPM holds, i.e., $M_{t+1} = \beta(g_{t+1})^{-\gamma}$ is a valid SDF;
 - We know this doesn’t work!

- With incomplete markets:
 - We do not have full insurance;
 - HHs do not equate MRS/consumption growth rates;

- However, if EE holds $\forall i$, any linear combination of individual SDFs should be valid;

- BCG test if equally-weighted sum of HH’s MRS is valid SDF:

 $$M_{t+1} = \beta I^{-1} \sum_{i=1}^{l} (g_{t+1}^i)^{-\gamma}$$
Euler Equation Errors: Approach

- Interested in EE errors of the form:
 \[
 u_{t+1} = I^{-1} \left(\beta \sum_{i=1}^{I} (g_{t+1}^{i})^{-\gamma} \right) \left(R_{t+1} - R_{t+1}^{f} \right)
 \]

- Conduct standard tests of: \(\frac{1}{T} \sum_{t=1}^{T} u_{t+1} = 0; \)
- They find that Euler equation is satisfied for reasonable \(\gamma \).
Euler Equation Errors: Result 1

<table>
<thead>
<tr>
<th>RRA</th>
<th>Unexplained Premium</th>
<th>Average</th>
<th>F-Statistic</th>
<th>Bootstrap</th>
<th>t-Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1.85</td>
<td>.04</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.95</td>
<td>.04</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.32</td>
<td>.06</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.88</td>
<td>.74</td>
<td>.52</td>
<td>.59</td>
<td>.11</td>
<td>.11</td>
</tr>
<tr>
<td>4</td>
<td><-10</td>
<td>.28</td>
<td>.52</td>
<td>.59</td>
<td>.60</td>
<td>.60</td>
</tr>
<tr>
<td>5</td>
<td><-10</td>
<td>.24</td>
<td>.54</td>
<td>.59</td>
<td>.67</td>
<td>.67</td>
</tr>
<tr>
<td>6</td>
<td><-10</td>
<td>.23</td>
<td>.53</td>
<td>.59</td>
<td>.64</td>
<td>.64</td>
</tr>
<tr>
<td>7</td>
<td><-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Value-Weighted Equity Premium

<table>
<thead>
<tr>
<th>RRA</th>
<th>Unexplained Premium</th>
<th>Average</th>
<th>F-Statistic</th>
<th>Bootstrap</th>
<th>t-Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1.78</td>
<td>.21</td>
<td>.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.83</td>
<td>.24</td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>.36</td>
<td>.29</td>
<td>.56</td>
<td>.59</td>
<td>.59</td>
</tr>
<tr>
<td>3</td>
<td><-10</td>
<td>.86</td>
<td>.81</td>
<td>.81</td>
<td>.81</td>
<td>.81</td>
</tr>
<tr>
<td>4</td>
<td><-10</td>
<td>.31</td>
<td>.57</td>
<td>.57</td>
<td>.57</td>
<td>.57</td>
</tr>
<tr>
<td>5</td>
<td><-10</td>
<td>.20</td>
<td>.56</td>
<td>.56</td>
<td>.56</td>
<td>.56</td>
</tr>
<tr>
<td>6</td>
<td><-10</td>
<td>.18</td>
<td>.55</td>
<td>.55</td>
<td>.55</td>
<td>.55</td>
</tr>
<tr>
<td>7</td>
<td><-10</td>
<td>.17</td>
<td>.59</td>
<td>.59</td>
<td>.59</td>
<td>.59</td>
</tr>
</tbody>
</table>

B. Equally Weighted Equity Premium

Constantinides & Duffie

Asset Pricing with Heterogeneous Consumers
They also perform the same test for the Constantinides & Duffie (JPE, 1996) SDF:

\[M_{t+1} = \beta \left(\frac{\sum I_{i=1}^I c_{t+1}^i}{\sum I_{i=1}^I c_t^i} \right)^{-\alpha} \exp \left\{ \frac{\alpha(\alpha+1)}{2} I^{-1} \sum I_{i=1}^I \left[\log(g_{t+1}^i) - \log(g_{t+1}^i)^2 \right] \right\} \]

This is equivalent to testing if most of the x-sectional variation of the consumption growth rate is captured by idiosyncratic income shocks that are:

1. Multiplicative;
2. i.i.d. lognormal.
Euler Equation Errors: Result 2

- Euler equation errors \textit{increase} with RRA;
- However, error is statistically insignificant for RRA > 1;
- Paper argues that this highlights the importance of the \textbf{x-sectional skewness} of the HH’s consumption growth rate, combined with the first two moments, which is a major contribution.
Zero Euler equation errors is one dimension along which to test an asset pricing model;

There are other dimensions too:

1. Return predictability;
2. Implied wealth-consumption ratio;
3. Persistence of SDF;

Can incomplete markets models explain some of these facts?