Empirical Financial Economics

The Efficient Markets Hypothesis - Generalized Method of Moments
Random Walk Hypothesis

Random Walk hypothesis a special case of EMH

\[E(r_{t+\tau}) = \tau \mu \]
\[E(r_{t+\tau}^2) = \tau \sigma^2 + \tau^2 \mu^2 \]
\[\tau = 1, 2, \ldots \]

Overidentification of model

- Provides a test of model (variance ratio criterion)
- Allows for estimation of parameters (GMM paradigm)
Variance ratio tests

\[VR(\tau) = \frac{\text{Var}(r_{t+\tau})}{\tau \text{Var}(r_t)} = 1 + 2 \sum_{k=1}^{\tau-1} (1 - \frac{k}{\tau}) \rho(k) \]

using sample quantities

\[\hat{\sigma}^2 = \frac{1}{n\tau} \sum_{\ell=1}^{n\tau} (r_{\ell+1} - \hat{\mu})^2 \]

\[\hat{\sigma}^2(\tau) = \frac{1}{n} \sum_{\ell=1}^{n} (r_{\ell+\tau} - \tau \hat{\mu})^2 \]

The variance ratio \(\hat{VR}(\tau) = \frac{\hat{\sigma}^2(\tau)}{\tau \hat{\sigma}^2} \) is asymptotically Normal

\[\sqrt{n\tau} (\hat{VR}(\tau) - 1) \xrightarrow{a} N[0, 2(\tau - 1)] \]
Overlapping observations

Non-overlapping observations

Overlapping observations

\[\hat{\sigma}^2 = \frac{1}{n\tau - 1} \sum_{t=1}^{n\tau} (r_{t+1} - \hat{\mu})^2 \]

\[\hat{\sigma}^2(\tau) = \frac{1}{m} \sum_{t=\tau}^{n\tau} (r_{t+\tau} - \tau\hat{\mu})^2; \quad m = \tau(n\tau - \tau + 1) \left(1 - \frac{1}{n}\right) \]

Variance ratio is asymptotically Normal

\[\sqrt{n\tau}(V\hat{R}(\tau) - 1) \overset{a}{\sim} N[0, 2\frac{(2\tau - 1)(\tau - 1)}{3\tau}] \]

Random walk model and GMM

\[r_{t+1} = \mu + v_{1t} \]
\[r_{t+j}^2 = j\sigma^2 + j^2\mu^2 + v_{2t} \]
\[r_{t+k}^2 = k\sigma^2 + k^2\mu^2 + v_{3t} \]

aggregate into moment conditions:

\[\frac{1}{T} \sum r_{t+1} = \mu + \frac{1}{T} \sum v_{1t} \]
\[\frac{1}{T} \sum r_{t+j}^2 = j\sigma^2 + j^2\mu^2 + \frac{1}{T} \sum v_{2t} \]
\[\frac{1}{T} \sum r_{t+k}^2 = k\sigma^2 + k^2\mu^2 + \frac{1}{T} \sum v_{3t} \]

and express as three observations of a nonlinear regression model:

\[y_1 = X_{11}\mu + X_{21}\sigma^2 + X_{31}\mu^2 + w_1 \]
\[y_2 = X_{12}\mu + X_{22}\sigma^2 + X_{32}\mu^2 + w_2 \]
\[y_3 = X_{13}\mu + X_{23}\sigma^2 + X_{33}\mu^2 + w_3 \]
An Aside on Linear Least Squares

\[y = X \beta + u \Rightarrow \hat{u} = y - X \hat{\beta} \]

\[
\min_{\hat{\beta}} \hat{u}'A\hat{u}
\]

\[
\text{FOC: } \frac{\partial \hat{u}'}{\partial \hat{\beta}} A\hat{u} = 0 \Rightarrow X' A\hat{u} = 0
\]

Choose \(\hat{\beta} : \)
\[
X' A \left[y - X \hat{\beta} \right] = 0
\]

\[
\hat{\beta} = \left[X' A X \right]^{-1} X' A y = \beta + \left[X' A X \right]^{-1} X' A u
\]

\[
\text{Var } \hat{\beta} = \left[X' A X \right]^{-1} X' A \left(E u u' \right) A X \left[X' A X \right]^{-1}
\]
An Aside on Nonlinear Least Squares

\[y = f(X, \beta) + u \Rightarrow \hat{u} = y - f(X, \hat{\beta}) \]

\[\approx (y - y_0) - D \left[\hat{\beta} - \beta_0 \right] \]

\[\text{Min } \hat{u}'A\hat{u} \]

\[FOC : \quad \frac{\partial \hat{u}'}{\partial \beta} A\hat{u} = 0 \Rightarrow D'A\hat{u} = 0 \]

\[\text{Choose } \hat{\beta} : \quad D'A \left[(y - y_0) - D \left[\hat{\beta} - \beta_0 \right] \right] = 0 \]

\[\hat{\beta} = \left(D'AD \right)^{-1} D'A(y - y_0) + \beta_0 = \beta + \left(D'AD \right)^{-1} D'Au \]

\[\text{Var } \hat{\beta} = \left(D'AD \right)^{-1} D'A(Euu')AD\left(D'AD \right)^{-1} \]
Generalized method of moment estimators

Choose \(\mu, \sigma \) to minimize \(w'Aw \). \(A \) is referred to as the optimal weighting matrix, equal to the inverse covariance matrix of \(w \)

- Estimators are asymptotically Normal and efficient
- Minimand is distributed as Chi-square with d.f. number of overidentifying information

Methods of obtaining \(A \)

1. Set \(A = I \) (Ordinary Least Squares). Estimate model.
 Set \(A = \Sigma^{-1} \) (Generalized Least Squares). Reestimate.

2. Use analytic methods to infer \(\Sigma \)
GMM and the Efficient Market Hypothesis

1 asset and 1 instrument: \[E \left\{ (r_{j,t+\tau} - E[r_{j,t+\tau} | x_t, \theta_j]) \times z_t \right\} = 0 \]
... 1 equation and k unknowns:

m assets and 1 instrument: \[E \left\{ (r_{i+\tau} - E[r_{t+\tau} | x_t, \theta]) \times z_t \right\} = 0 \]
... m equations and >k unknowns:

m assets and n instrument: \[E \left\{ (r_{i+\tau} - E[r_{t+\tau} | x_t, \theta]) \times Z_t \right\} = 0 \]
... mn equations and >k unknowns:

\[f_t(\theta) = E \left\{ (r_{i+\tau} - E[r_{t+\tau} | x_t, \theta]) \times Z_t \right\}; \quad g_t(\theta) = T^{-1} \sum_{i=1}^{T} f_i(\theta) \]

Autocovariances and cross autocovariances

\(\gamma_{xx}(k) \)

\(\gamma_{xy}(-k) = \gamma_{yx}(k) \)

\(\gamma_{xx}(k) \)

\(\gamma_{xy}(k) \)

\(\gamma_{yy}(k) \)

\(x_t \)

\(y_t \)

\(t-k \)

\(t \)

\(t+k \)
Cross autocovariances are not symmetrical!

Autocovariances are given by:

\[
\gamma_{xx}(k) = E[(x_t - \mu_x)(x_{t+k} - \mu_x)] = E[(x_t - \mu_x)(x_{t-k} - \mu_x)] = \gamma_{xx}(-k)
\]

\[
\gamma_{yy}(k) = E[(y_t - \mu_y)(y_{t+k} - \mu_y)] = E[(y_t - \mu_y)(y_{t-k} - \mu_y)] = \gamma_{yy}(-k)
\]

Cross autocovariances are given by:

\[
\gamma_{xy}(k) = E[(x_t - \mu_x)(y_{t+k} - \mu_y)] = E[(y_t - \mu_y)(x_{t-k} - \mu_x)] = \gamma_{yx}(-k)
\]
Cross autocovariances and the weighting function

\[
\text{For } w = \left[\frac{1}{T} \sum_{t=1}^{T} x_t \right] \\
\frac{1}{T} \sum_{t=1}^{T} x_t
\]

\[
\text{Cov}(w) = \frac{1}{T^2} \left[\sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{x_t x_{\tau}} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{x_t y_{\tau}} \right] \\
\sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{y_t x_{\tau}} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{y_t y_{\tau}}
\]
Assuming stationarity

\[
\text{Cov}(x) = \begin{bmatrix}
\gamma_{xx}(0) & \gamma_{xx}(1) & \gamma_{xx}(2) & \gamma_{xx}(3) & \gamma_{xx}(4) \\
\gamma_{xx}(1) & \gamma_{xx}(0) & \gamma_{xx}(1) & \gamma_{xx}(2) & \gamma_{xx}(3) \\
\gamma_{xx}(2) & \gamma_{xx}(1) & \gamma_{xx}(0) & \gamma_{xx}(1) & \gamma_{xx}(2) \\
\gamma_{xx}(3) & \gamma_{xx}(2) & \gamma_{xx}(1) & \gamma_{xx}(0) & \gamma_{xx}(1) \\
\gamma_{xx}(4) & \gamma_{xx}(3) & \gamma_{xx}(2) & \gamma_{xx}(1) & \gamma_{xx}(0) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\]

and so

\[
\frac{1}{T} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{x_{t}x_{\tau}} = \gamma_{xx}(0) + 2 \sum_{k=1}^{T-1} \frac{T - k}{T} \gamma_{xx}(k) \approx \gamma_{xx}(0) + 2 \sum_{k=1}^{\infty} \gamma_{xx}(k)
\]
Apply this to cross covariances

\[\frac{1}{T} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{x_t y_\tau} = \gamma_{xy} (0) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xy} (k) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xy} (-k) \]

\[= \gamma_{xy} (0) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xy} (k) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yx} (k) \]

and

\[\frac{1}{T} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sigma_{y_t x_\tau} = \gamma_{yx} (0) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yx} (k) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yx} (-k) \]

\[= \gamma_{yx} (0) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yx} (k) + \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xy} (k) \]
A simple expression for the inverse weighting matrix

\[
\text{Cov}(w) = \frac{1}{T^2} \left[\sum_{t=1}^{T} \sum_{\tau=1}^{\tau} \sigma_{x_t x_{\tau}} \sum_{t=1}^{T} \sum_{\tau=1}^{\tau} \sigma_{x_t y_{\tau}} + \sum_{t=1}^{T} \sum_{\tau=1}^{\tau} \sigma_{y_t x_{\tau}} \sum_{t=1}^{T} \sum_{\tau=1}^{\tau} \sigma_{y_t y_{\tau}} \right] = \frac{A + A'}{2}
\]

where

\[
A = \begin{bmatrix}
\gamma_{xx} (0) + 2 \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xx} (k) & \gamma_{xy} (0) + 2 \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{xy} (k) \\
\gamma_{yx} (0) + 2 \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yx} (k) & \gamma_{yy} (0) + 2 \sum_{k=1}^{T-1} \frac{T-k}{T} \gamma_{yy} (k)
\end{bmatrix}
\]

\[
A' = \begin{bmatrix}
\gamma_{xx} (0) + \sum_{k=1}^{\infty} \gamma_{xx} (k) & \gamma_{xy} (0) + \sum_{k=1}^{\infty} \gamma_{xy} (k) \\
\gamma_{yx} (0) + \sum_{k=1}^{\infty} \gamma_{yx} (k) & \gamma_{yy} (0) + \sum_{k=1}^{\infty} \gamma_{yy} (k)
\end{bmatrix}
\]
Some applications of GMM

- **Fixed income securities**

 \[\ln p_{t+\tau} = A(\theta, \tau) + B(\theta, \tau)i_{t+\tau} \]

 - Construct moments of returns based on distribution of \(i_{t+\tau} \)
 - Estimate \(\theta \) by comparing to sample moments

- **Derivative securities**

 - Construct moments of returns by simulating PDE given \(\theta \)
 - Estimate \(\theta \) by comparing to sample moments

- **Asset pricing with time-varying risk premia**
CEV Example

\[dS = \left[A S^{-(1-\gamma)} + BS \right] dt + \sigma_s S^{\gamma/2} dz \]

Special cases:

\(\gamma = 1: \) \(dS \) is a mean reverting process

\[dS = K(\theta - S_t)dt + \sigma_s \sqrt{S_t} dz \quad (K = -B, \theta = -A / B) \]

\(\gamma = 2: \) \(dS / S_t \) is a standard Gaussian diffusion

\[dS = \mu S_t dt + \sigma_s S_t dz \quad (\mu = A + B) \]

Method 1: Solve for \(S_t \)

Define moments of \(S_t, \quad \mu_S^i = f^i(A, B, \gamma) \)

Compare to sample moments ...
CEV Example

\[dS = \left[AS^{-(1-\gamma)} + BS \right] dt + \sigma_s S^{\gamma/2} dz \]

Special cases:

\(\gamma = 1: \) \(dS \) is a mean reverting process

\[dS = K(\theta - S_t) dt + \sigma_s \sqrt{S_t} dz \quad (K = -B, \theta = -A/B) \]

\(\gamma = 2: \) \(dS / S_t \) is a standard Gaussian diffusion

\[dS = \mu S_t dt + \sigma_s S_t dz \quad (\mu = A + B) \]

Method 2: Simulate \(dS \) given starting value \(S_0 \) and \((A, B, \gamma)\)

Estimate moments of \(S_t \), \(\hat{\mu}_s^i = \hat{f}^i(A, B, \gamma) \)

Compare to sample moments ...