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Abstract. The exact analysis of a network of queues with multiple products is, in general, prohibited
because of the non-renewal structure of the arrival and departure processes. Two-moment approximations
(decomposition methods, Whitt [9]) have been successfully used to study these systems. The performance
of these methods, however, strongly depends on the quality of the approximations used to compute the
squared coefficient variation (CV) of the different streams of products.

In this paper, an approximation method for computing the squared coefficient of variation of the de-
parture stream from a multi-class queueing system is presented. In particular, we generalize the results of
Bitran and Tirupati [3] and Whitt [11] related to the interference effect.
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Consider the following situation:

Figure 1.

A single server queueing station serves, according to a FIFO policy, a family of
n different products. The arrival process of product i (i = 1, . . . , n) is renewal and
it is characterized by the counting process {Ni(t): t � 0}. The arrival processes are
independent across products. In addition, we define

• Xi : the random variable that describes the inter-arrival interval for product i.

• λi = (E[Xi])−1: the mean arrival rate of product i.

• Ci: the squared coefficient of variation of the inter-arrival interval of product i.

• 
i(s): the Laplace–Stieljes transform of the cdf of Xi .
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From the point of view of the server, the arrival process to the station is {NA(t):
t � 0}, where NA(t) = ∑n

i=1 Ni(t). Except for very particular cases (e.g., the Ni(t)

are Poisson processes), neither the arrival nor the departure streams to the station are
renewal processes. If the interest is to model the behavior of a network of queues with
multiple products where each station of the network looks like the one in figure 1, then
the non-renewal structure of the arrival and departure processes makes the exact analysis
of the system almost intractable.

For that reason, approximate methods have been developed to evaluate different
performance measures of the system. One of the most successful approaches has been
the decomposition method. In simple terms, this method approximates the different
streams of products on the network by renewal processes, and then analyzes each station
in isolation (the reader is referred to [2,8,9] for more details about the decomposition
method). The quality of the results produced by this method is, of course, strongly re-
lated to the quality of the approximations made to represent the non-renewal processes
by renewal processes. Therefore, most of the effort required by the decomposition ap-
proach is in the characterization of the different streams of products within the system.

The performance measures for a GI/G/1 queue are based on the first two moments
of the arrival process and service distribution [6]. For this reason, mean and coefficient
of variation are the main statistics that researchers have considered when developing the
decomposition method.

For the particular case of figure 1, we are interested in the behavior of the departure
stream, and, in particular, in the point processes that characterize the departure of each
type of product. In terms of the aggregate departure stream, there are good approxima-
tions for the mean and CV of the inter-departure interval (see [8,10]). For example,

λD =
n∑
i=1

λi, (1)

CD = ρ2CS + (
1 − ρ2

)
CA, (2)

where λD is the total departure rate, CD, CS and CA are the CV of the departure, service
and arrival processes, respectively. And ρ is the traffic intensity of the station.

A first approach to estimate from (1) and (2) the parameters for each product is to
assume that each departure has probability pi ≡ λi/λ

D (i = 1, . . . , n) of being an i
product. Thus, the output stream of product i is characterized by [9]

λDi = λi, (3)

CD
i =piC

D + 1 − pi. (4)

Relation (3) is of course exact. However (4) is in general an approximation which
is based on a Markovian routing structure and it does not fully incorporate the structure
of the departure process which is strongly related to the arrival process.

An important refinement to (4) was first proposed by Bitran and Tirupati [3]. The
main idea is to incorporate the interference that other products have on a particular prod-
uct. For example, consider figure 2.



APPROXIMATIONS FOR MULTI-CLASS DEPARTURE PROCESSES 207

Figure 2.

In figure 2, Xi is the inter-departure interval for product i (circles). Zi represents
the number of products different than i that depart within the interval Xi . Therefore,
if we approximate the aggregate departure process by a renewal process with inter-
departure interval XD, we have the following identity:

Xi =
Zi+1∑
k=1

XD
k , (5)

where {XD
k }k�1 is a sequence of i.i.d. random variables. Defining Wi = Zi + 1, the

improvement to (4) is [3]

CD
i = piC

D + CWi
, (6)

where CWi
is the CV of Wi . In their paper, Bitran and Tirupati [3] discuss the difficulty

of evaluating CWi
and proposed three types of approximations based on special distri-

butions (Poisson and Erlang). Whitt [11], extended the work of Bitran and Tirupati,
approximating CD

i by considering specific renewal processes. In particular, Whitt used
batch-Poisson and batch-deterministic processes to extend Bitran and Tirupati’s results.

In what follows, we extend those results to the general case. Let us first de-
compose Zi ≡ ∑

j 
=i Zji , where Zji is the number of departure of product j dur-
ing an inter-departure interval of product i. Since the server uses a FIFO discipline,
Zji also represents the number of arrivals of product j during an inter-arrival inter-
val of product i. In addition, the arrival streams of the different products are inde-
pendent renewal processes, thus an arbitrary arrival time of product i represents a ran-
dom incidence time for the other arrival processes. Therefore, conditioned on Xi = t ,
Zji(t) is the counting process associated with the corresponding equilibrium process
of the arrivals of product j (see [5] for more details about the equilibrium process). Let
Kj(n, t) ≡ Pr(Zji(t) = n), then the Laplace transform ofKj(n, t) is (see [4] for details
on the derivation of (7))

Kj(z, s) ≡
∫ ∞

0
e−st

( ∞∑
n=0

znKj (n, t)

)
dt = 1

s
+ λj (1 −
j(s))(z − 1)

s2(1 − z
j(s))
. (7)

Taking the first derivative of Kj(z, s) with respect to z and evaluating the result at
z = 1, we obtain the Laplace transform for the mean of Zji(t), i.e.,

L
(
E
[
Zji(t)

]) =
(
∂Kj (z, s)

∂z

)
z=1

=
(
λj (1 −
j(s))

2

s2(1 − z
j(s))2

)
z=1

= λj

s2
. (8)



208 RENÉ CALDENTEY

Thus, inverting the transform we get

E
[
Zji(t)

] = λj t. (9)

If we now take the second derivative of Kj(z, s) with respect to z, we have that

L
(
E
[(
Zji(t)

)2 − Zji(t)
]) =

(
∂2Kj(z, s)

∂z2

)
z=1

= 2λj
j(s)

s2(1 −
j(s))
. (10)

Let

fj (t) ≡ E
[(
Zji(t)

)2 − Zji(t)
] = L−1

(
2λj
j (s)

s2(1 −
j(s))

)
.

Proposition 1. If the arrival processes for the different products are mutually indepen-
dent, then the coefficient of variation of Wi is

CWi
= (1 − pi)

[
(1 − pi)Ci + pi

]− (Ci + 1)
∑
j 
=i

p2
j + p2

i

∑
j 
=i

E
[
fj (Xi)

]
. (11)

In addition, let Fkj (·) be the k-fold convolution of the distribution of Xj , and let
Ykj be a random variable with cdf Fkj (t). Then,

fj (t) = 2λj

∞∑
k=1

(∫ t

0
Fkj (z) dz

)
= 2λj

∞∑
k=1

E
[
(t − Ykj )

+]. (12)

Proof. See the appendix. �

Relation (11) is exact. However, computing fj (·) from (12) is not always a simple
task. In the general case, numerical methods can be used to (i) solve the inversion
problem in (10) (see [1]) and then apply (11), or (ii) estimate fj (t) from (12) through
simulation. In addition, a simple bound can be found by applying Jensen’s inequality
to (12), i.e.,

E
[
(t − Ykj )

+] �
(
t − k

λj

)+
.

We conclude this note by analyzing four special cases that have received special
attention in the literature:

Case 1. Poisson arrivals

Clearly, one the most classical assumptions in the queueing literature is that arrival
processes are Poisson. Under this assumption, the Xj are exponentially distributed with
rate λj and the inversion problem can be solved in closed form. In fact,

fj (t)=L−1

(
2λj
j (s)

s2(1 −
j(s))

)
= L−1

(
2λ2

j

s3

)
= λ2

j t
2. (13)
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Thus, replacing (13) in (11) and after some straightforward manipulations we ob-
tain

CWi
= (1 − pi)

[
(1 − pi)Ci + pi

]
. (14)

This condition was first derived in [3] as part of their first approximation. In fact,
combining (6) and (14), we recover relation (11) in [3]

CD
i = piC

D + (1 − pi)
[
(1 − pi)Ci + pi

]
.

Case 2. Asymptotic result

Another important case arises when each of the input streams has a small intensity when
compared to the aggregate stream. In this situation, we can use the asymptotic approxi-
mation (see [4] for details)

L−1

(

j(s)

s(1 −
j(s))

)
≈ λj t + Cj − 1

2
.

Thus, combining this relation and the property sL(f (t)) = L(f ′(t)) + f (0), we
end up with

fj (t) = λ2
j t

2 + λj (Cj − 1)t. (15)

Finally, replacing (15) in (11) we get

CWi
= (1 − pi)

2Ci + pi
∑
j 
=i

pjCj . (16)

If we aggregate all the classes different than i in a single class i−, then the previous
relation is equivalent to

CWi
= (1 − pi)

2Ci + (1 − pi)piCi− .

This is exactly equation (4) in [11] and it was obtained using batch-Poisson and
batch-deterministic renewal processes.

Both previous cases exploit some asymptotic result. In what follows, we present
two cases that have a different inspiration. Based on the decomposition method, we
know that product streams are usually characterized by their first two moments. More-
over, depending on the value of the squared coefficient of variation, a sum or a mixture
of two exponential random variables can be used to fit the first two moments (see [8]).
The sum of two exponentials is used when the CV is lower than 1, and the mixture of
two exponentials is used when the CV is greater than 1.
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Case 3. Sum of two exponentials

LetXj = Y1j+Y2j , where Yrj is an exponential random variable with rate µrj , r = 1, 2.
Then, 
j(s) is


j(s) =
(

µ1j

µ1j + s

)(
µ2j

µ2j + s

)
.

The function fj (t) can be computed solving

fj (t) = 2λjL
−1

(
µ1jµ2j

s3(s + µ1j + µ2j )

)
.

In this case, the inversion problem can be obtained in closed form. In fact, after
some algebra we get

fj (t) = 2λj

(
µ1jµ2j

µ1j + µ2j

)[
t2

2
− t

µ1j + µ2j
+ 1 − e−(µ1j+µ2j )t

(µ1j + µ2j )2

]
.

In addition, using the identities

λj = µ1jµ2j

µ1j + µ2j
and µ1j + µ2j = 2λj

1 − Cj

we obtain

fj (t) = λ2
j t

2 + λj (Cj − 1)t + (1 − Cj)
2

2

(
1 − e−2λj t/(1−Cj)). (17)

Finally, replacing (17) in (11) we get

CWi
= (1 − pi)

2Ci + pi
∑
j 
=i

pjCj +
(
p2
i

2

)∑
j 
=i

(1 − Cj)
2

[
1 −
i

(
2λj

1 − Cj

)]
. (18)

We can see that relation (18) generalizes relations (14) and (16). In fact, using
Cj = 1 (exponential distribution) or λj ≈ 0 (asymptotic case) in (18) we recover the
previous relations.

Case 4. Mixture of two exponentials

Let Xj = Y1j with probability θ1j and Xj = Y2j with probability θ2j = 1 − θ1j . In this
situation, the Laplace–Stieljes transform of Xj is


j(s) = θ1jµ1j

µ1j + s
+ θ2jµ1j

µ2j + s
.

If, in addition, we assume balanced mean, i.e., θ1j /µ1j = θ2j/µ2j (see [7] for
details), we have

θrj =
√
Cj + 1 ±√

Cj − 1

2
√
Cj + 1

and µrj = 2λjθrj , r = 1, 2.
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In this case, we can again compute in closed form fj (t). We omit here the details
of the derivation.

fj (t) = λ2
j t

2 + λj (Cj − 1)t + 2
(
C2
j − 1

)(
1 − e−2λj t/(cj+1)). (19)

From (19) and (11), we conclude:

CWi
= (1 − pi)

2Ci + pi
∑
j 
=i

pjCj + 2p2
i

∑
j 
=i

(
C2
j − 1

)[
1 −
i

(
2λj

Cj + 1

)]
. (20)
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Appendix

Proof of proposition 1. Let us first recall that Wi = Zi + 1 = ∑
j 
=i Zji + 1. Thus,

E[Wi] =
∑
j 
=i

E[Zji] + 1 and Var[Wi] = Var[Zi].

From (9) E[Zji(t)] = λj t , therefore E[Zji] = λjE[Xi] = pj/pi , and

E[Wi] =
∑
j 
=i

pj

pi
+ 1 = 1

pi
. (A.1)

On the other hand, from the definition of fj (t) we have

E
[(
Zji(t)

)2] = fj (t)+ E
[
Zji(t)

] = fj (t)+ λj t,

which implies

E
[(
Zi(t)

)2]=E

[(∑
j 
=i

Zji(t)

)2
]

=
∑
j 
=i

[
fj (t)+ λj t

]+ 2
∑
j 
=i

∑
k<j ; k 
=i

E
[
Zji(t)Zki(t)

]
. (A.2)

But conditioned on Xi = t , the random variables Zji(t) and Zki(t) (k 
= j) are
independent, therefore (A.2) becomes

E
[(
Zi(t)

)2] =
∑
j 
=i

fj (t)+ λ(1 − pi)t + 2λ2t2
∑
j 
=i

∑
k<j ; k 
=i

pjpk. (A.3)

Taking expectation in (A.3) with respect to Xi we get

E
[
Z2
i

] =
∑
j 
=i

E
[
fj (Xi)

]+ 1 − pi

pi
+ 2λE

[
X2
i

]∑
j 
=i

∑
k<j ; k 
=i

pjpk.
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Thus, combining this equation and (A.1), we end up with

Var[Wi] =E
[
Z2
i

]− (
E[Zi]

)2

=
∑
j 
=i

E
[
fj(Xi)

]+ (1 − pi)(2pi − 1)

p2
i

+ 2λE
[
X2
i

]∑
j 
=i

∑
k<j ; k 
=i

pjpk. (A.4)

Combining (A.1) and (A.4), and after some manipulations we have

CWi
= (1 − pi)

[
(1 − pi)Ci + pi

]− (Ci + 1)
∑
j 
=i

p2
j + p2

i

∑
j 
=i

E
[
fj (Xi)

]
, (A.5)

completing the proof of the first part. For the second part, we use the following result:

sL
(
fj (t)

) = 2λj

(

j(s)

s(1 −
j(s))

)
= 2λj

∞∑
k=1


k
j(s)

s
.

We note that 
k
j(s) represents the Laplace–Stieljes transform for the k-fold convo-

lution of the distribution of Xj . The proof is completed combining this observation and
the following identities:

• sL(f (t)) = L(f ′(t))+ f (0).

• L(f (s))/s = L(F(s)), where F(t) = ∫ t
0 f (z) dz.

• If X is non-negative random variable with cdf F(x), then for any t � 0,∫ t

0
F(z) dz = E

[
(t −X)+

]
. �
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