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Prologue

Can you construct a dinner schedule that:

never goes 2 days without macaroni and cheese

never goes 3 days without pizza

never goes 5 days without fish?

never goes 7 days without tacos?

Answer: Impossible. For N ≥ 60,

bN/2c+ bN/3c+ bN/5c > N.
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Prologue

The Pinwheel Problem

Given g1, . . . , gn, can Z be partitioned into S1, . . . ,Sn such that Si
intersects every interval of length gi?

E.g., (g1, . . . , g5) = (3, 4, 6, 10, 16)
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It belongs to PSPACE.

No non-trivial lower bounds known.

Later in this talk: PTAS for an
optimization version.
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The Multi-Armed Bandit Problem

Stochastic Multi-Armed Bandit Problem: A decision-maker
(“gambler”) chooses one of n actions (“arms”) in each time step.

Chosen arm yields random payoff from unknown distrib. on [0, 1].

Goal: Maximize expected total payoff.
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function of its “idle time.”
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Recharging Bandits

Pulling arm i at time t, when it was last pulled at time s,
yields random payoff with expectation Hi (t − s).

Hi is an increasing, concave function; Hi (t) ≤ t.

Concavity assumption implies free disposal: in step t, pulling i is
better than doing nothing because

Hi (u − t) + Hi (t − s) ≥ Hi (u − s).



Recharging Bandits

In many applications, an arm’s expected payoff is an increasing
function of its “idle time.”

Recharging Bandits

Pulling arm i at time t, when it was last pulled at time s,
yields random payoff with expectation Hi (t − s).

Hi is an increasing, concave function; Hi (t) ≤ t.

With known {Hi}: a special case of deterministic restless bandits.

General case is PSPACE-hard [Papadimitriou & Tsitsiklis 1987].

Which reinforcement learning problems have a PTAS?
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yields random payoff with expectation Hi (t − s).

Hi is an increasing, concave function; Hi (t) ≤ t.

Plan of attack:

1 Analyze optimal play when {Hi} are known.

2 Use upper confidence bounds + “ironing” to reduce the case
when {Hi} must be learned to the case when they are known.
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Greedy 1
2-Approximation

Greedy algorithm: always maximize payoff in current time step.

Greedy/OPT ratio can be arbitrarily close to 1/2

H1(t) = 1− ε, H2(t) = t.

Greedy always pulls arm 2.

“Almost-OPT” pulls arm 1 for T � 1 time steps, then arm 2.

Net payoff (2− ε)T + 1 over T + 1 time steps.



Greedy 1
2-Approximation

Greedy algorithm: always maximize payoff in current time step.

Greedy/OPT is never less than 1/2

Imagine allowing the algorithm (but not OPT) to pull two
arms per time step.

At each time, supplement the greedy selection with the arm
selected by OPT, if they differ.

This at most doubles the payoff in each time step.

Net payoff of supplemented schedule ≥ OPT.
(free disposal property)



Rate of Return Function

For 0 ≤ x ≤ 1, let Ri (x) denote maximum long-run average payoff
achievable by playing i in at most x fraction of time steps.

Ri (x) = sup

 1

T

∑̀
j=1

Hi (tj − tj−1)

∣∣∣∣∣∣ T <∞, ` ≤ x · T ,
0 = t0 < t1 < · · · < t` ≤ T

 .

Fact: Ri is piecewise-linear with breakpoints Ri (
1
k ) = 1

kHi (k).
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Rate of Return Function

For 0 ≤ x ≤ 1, let Ri (x) denote maximum long-run average payoff
achievable by playing i in at most x fraction of time steps.

Ri (x) = sup

 1

T

∑̀
j=1

Hi (tj − tj−1)

∣∣∣∣∣∣ T <∞, ` ≤ x · T ,
0 = t0 < t1 < · · · < t` ≤ T

 .

Fact: Ri is piecewise-linear with breakpoints Ri (
1
k ) = 1

kHi (k).

Proof sketch: The optimal sequence 0 = t0 < · · · < t` ≤ T has
at most two distinct gap sizes, b 1x c and d 1x e.



Concave Relaxation

The problem

max

{
n∑

i=1

Ri (xi )

∣∣∣∣∣ ∑
i

xi ≤ 1, ∀i xi ≥ 0

}

specifies an upper bound on the value of the optimal schedule.
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Mapping (x1, . . . , xn) to a schedule: pinwheel problem!
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Independent Rounding

First idea: every time step, sample arm i with probability xi .

Then τi = delay of arm i = tj(i)− tj−1(i) is geometrically
distributed with expectation 1/xi .

Rounding scheme gets xi · EHi (τi ) whereas relaxation gets
Ri (xi ) = xiHi (1/xi ) = xi · Hi (Eτi ).

Fact: if H is concave and non-decreasing and Y is geometrically
distributed then EH(Y ) ≥

(
1− 1

e

)
H(EY ).

To do better, need rounding scheme that reduces variance of τi .
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Interleaved Arithmetic Progressions

Second idea: round continuous-time schedule to discrete time.

In continuous time, pull i at { ri+k
xi
| k ∈ N} where ri ∼Unif [0, 1).

Map this schedule to discrete time in an order-preserving manner.

Between two pulls of i , we pull j either bxj/xic or dxj/xie times.

τi = 1 +
∑

j 6=i Zj

{Zj} are independent, each supported on 2 consecutive integers.
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Convex Stochastic Ordering

Definition

If X ,Y are random variables, the convex stochastic ordering
defines X≤cxY if and only if Eφ(X ) ≤ Eφ(Y ) for every convex
function φ.

Lemma

If X is a sum of independent Bernoulli random variables and Y is
Poisson with EY = EX then X≤cxY .

τi = 1 +
∑

j 6=i Zj ≤cx 1 + Pois( 1
xi
− 1)

xi · EHi (τi ) ≥ xi · EHi (1 + Pois( 1
xi
− 1))
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Approximation Ratio for Interleaved AP Rounding

Fact 1: If H is concave and non-decreasing and Y is Poisson, then
EH(1 + Y ) ≥ (1− 1

2e )H(1 + EY )

Fact 2: If H is concave and non-decreasing and Y is Poisson with
EY ≥ m, then

EH(1 + Y ) ≥
(

1− 1√
2πm

)
H(1 + EY )

Conclusion: Interleaved AP rounding is

a 1− 1
2e ≈ 0.816 approximation in general

a 1− δ approximation for “small arms” to whom the concave
relaxation assigns xi < δ2



PTAS for Recharging Bandits

Let ε > 0 be a small constant. Two easy cases . . .

1 All arms are big. Every arm that gets pulled in the optimal
schedule is pulled with frequency ε2 or greater.

Then the optimal schedule uses only 1/ε2 arms. Brute-force
search takes polynomial time.

2 All arms are small. If the optimal concave program solution
has xi < ε2 for all i , then randomly interleaved arithmetic
progressions get 1− ε approximation.

Combine the cases using “partial enumeration”. For p = Oε(1) . . .

Outer loop: iterate over p-periodic schedules of arms and gaps.

Inner loop: fit small arms into gaps using interleaved AP rounding.



PTAS Difficulties

Gaps in the p-periodic schedule may not be equally spaced.

For each small arm choose just one congruence class (mod p)
of “eligible gaps.”

Bin-pack small arms into congruence classes.

Works if xi < ε2/p for small arms while xi ≥ 1/p for big arms.

Eliminate intermediate arms by finding k ≤ 1/ε such that arms
with xi ∈ (ε4(k+1), ε4k ] contribute less than ε · OPT.

Conclusion: # of big arms ≤ (1/ε)O(1/ε).
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Why can we assume big arms are scheduled with period
p = Oε(1)?

We need existence of a p-periodic schedule that matches two
properties of OPT

1 rate of return from big arms
2 amount of time left over for small arms

Existence proof is surprisingly technical; omitted.

Conclusion p = (#big)/ε2 suffices.
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PTAS Difficulties

Gaps in the p-periodic schedule may not be equally spaced.

Why can we assume big arms are scheduled with period
p = Oε(1)?

We need existence of a p-periodic schedule that matches two
properties of OPT

1 rate of return from big arms
2 amount of time left over for small arms

Existence proof is surprisingly technical; omitted.

Conclusion p = (#big)/ε2 suffices.

Grand conclusion: PTAS with running time n(1/ε)
(24/ε)

.

Remark: the 0.816-approximation runs in time O(n2 log n).



Recharging Bandits: Regret Minimization

Now suppose {Hi} are not known, must be learned by sampling.

Idea: divide time into “planning epochs” of length φ = O(n/ε).

In each epoch . . .

1 Compute H̄i (x), an upper confidence bound on Hi (x), ∀i .
2 Run approx alg. on {H̄i} to schedule arms within epoch.

3 Update empirical estimates and confidence radii.
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Summary

Recharging bandits: A model for learning to schedule recurring
tasks (interventions) whose benefit increases with latency.

Approximation algorithms:

simple greedy (12);

rounding concave relaxation using interleaved arithmetic
progressions (1− 1

2e );

partial enumeration and concave rounding (1− ε).

Nice connections to pinwheel problem in additive combinatorics.



Open Questions

1 Pinwheel problem
1 Complexity? (Could be in P. Could be PSPACE-complete.)

2 Is (g1, . . . , gn) always feasible if
∑

i g
−1
i ≤ 5/6?

3 Is (g1 + 1, . . . , gn + 1) always feasible if
∑

i g
−1
i ≤ 1?

Best result in this direction: increase gi + 1 to gi + g
1/2+o(1)
i .

[Immorlica-K. 2017]

2 Reinforcement learning: What other special cases admit
PTAS?
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Open Questions

3 Applications: extend recharging bandits model to incorporate
domain-specific features such as . . .

1 (fighting poachers) Strategic arms with endogenous payoffs.
[Kempe-Schulman-Tamuz ’17]

2 (invasive species removal) Externalities between arms.
Movement costs.

3 (education) Payoffs with more complex history-dependency.
[Novikoff-Kleinberg-Strogatz ’11]


