Time value of money.
FV, PV, annuities, perpetuities.

Professor Lasse H. Pedersen

Outline

- Time value of money
- FV, PV, yield
- Single payment security
 - Example: zero coupon bond
- Multiple payment security
 - Annuities and perpetuities

Future Value, FV

- Timeline
- Investing for a single period
 - $FV = PV \times (1+r)$
- Investing for multiple periods
 - Interest on interest
 - Compounding
 - $FV = PV \times (1+r)^t$
- Simple interest
Present Value, PV

- Single-period case:
 - How much do you need to invest today, with an interest rate of \(r \), to have \(FV \) next year?
 - \(PV = FV \frac{1}{1+r} \)

- Multiple-period case:
 - \(PV = FV \frac{1}{(1+r)^t} \)

- Discount factor (= present value factor):
 - \(\frac{1}{(1+r)^t} \)

PV, FV, r, t are tied together.
If you know 3, you can find the last one

- What is the yield, \(r \)?
 - Suppose you know the present value, and the (future) value at a given future time:
 What is the yield (or the return)?

- How many periods, \(t \)?
 - Suppose you have a given amount of money, you know the interest rate, and you know the future value that you need:
 How many periods does it take?

Zero Coupon Bond

- Where do zero coupon bonds come from?
 - Issued in primary markets (Treasury notes)
 - Stripping of coupon bonds (example of “financial engineering”)

- Pricing of zeros by arbitrage
 (Extremely important pricing principle!)
Multiple Payments

- **Timeline**
- **Future value of stream of cash flows** \(C(0), C(1), \ldots, C(T) \):
 \[
 FV(T) = C(0)(1 + r)^T + C(1)(1 + r)^{T-1} + \ldots + C(T)
 \]
- **Present value**:
 \[
 PV = C(0) + C(1) \frac{1}{(1 + r)} + \ldots + C(T) \frac{1}{(1 + r)^T}
 \]
- **Yield**: IRR (discussed in later class)

Perpetuities

- **Perpetuities**
 - **Definition**: Pays a fixed cashflow, \(C \), every period forever
 - **Example**: consol bond
 - **Pricing**: \(PV = \frac{C}{r} \)
- **Example**:
 - Suppose that maintenance of your grave costs $100 every year, forever.
 - The interest rate is 5% per year.
 - How much money should you leave the trustee of your grave?

Annuities

- **Annuities**:
 - **Definition**: Pays a fixed cashflow, \(C \), for \(T \) periods
 - **Price**:
 \[
 PV = \frac{C}{r} \left(\frac{1 - \frac{1}{(1 + r)^T}}{r} \right)
 \]
 - **What is the future value?**
- **Example: Which car you afford?**
 - You have no money
 - You can borrow at an interest rate of 1% per month
 - You can pay $632 per month
 - You want to have paid the loan in full in 48 months
Relationship between interest rate and price

- For perpetuities?
- For other bonds?
- Later in class: duration.
- For stocks?

- Does Alan Greenspan matter?