Extracting Brand Perceptions from Consumer Created Images: A Machine Learning Approach

Liu Liu\(^1\), Daria Dzyabura\(^1\), Natalie Mizik\(^2\)

\(^1\)New York University - Stern School of Business
\(^2\)University of Washington - Foster School of Business

2016 Stanford GSB Digital Marketing Conference
Visual Content on the Rise

“3.8 trillion photos were taken in all of human history until mid-2011, but 1 trillion photos were taken in 2015 alone…” (Kane & Pear, 2016)

New successful social media platforms emphasize visual content

![Social Media Logos](https://www.instagram.com/press/)

1. e.g., Instagram users add an average of 95M photos/videos daily

Brands Embrace Visual Marketing

Companies develop visual stimuli to shape customers’ perceptions of brands

- One-third of total annual marketing budgets was earmarked for creating, producing, and promoting visual content in 2016 (Gujral, 2015).
Consumer-Created Brand Images (i.e., #brand)

- Consumers post millions of photos online to share their experiences and communicate their feelings, thoughts, and attitudes.
- They often hashtag brands and depict their interactions with brands
 - 49,580,574 posts on Instagram with #nike (retrieved Nov. 2016)

#eddiebauer #prada
Do consumer-created brand images reflect their brand perceptions?

#eddiebauer
rugged

#prada
glamorous
Do consumer-created brand images reflect their brand perceptions?

Propose a method for extracting brand perceptions from images

Apply it to consumer-created images, and demonstrate that these images reflect consumers’ brand perceptions.
Related Literature

Visual Design: color, shape, texture as fundamental elements of design (Hashimoto & Clayton, 2009; Dondis, 1974; Arnheim, 1954)

Computer Vision: extract quantifiable features (Shapiro & Stockman, 2001)

Visual Marketing: visual stimuli impact consumer behavior and perceptions (see Wedel & Pieters, 2007) for a review)
Outline of the Talk

- **Methodology: Perceptual attributes image classification**
 1. Collect images labeled with perceptual attributes
 2. Extract visual features
 3. Train classifiers

- **Application on Consumer-Created Images**
 - Compare consumer and firm-created images to consumer brand perceptions measured in survey

- **Summary**
Outline of the Talk

- **Methodology:** Perceptual attributes image classification
 1. Collect images labeled with perceptual attributes
 2. Extract visual features
 3. Train classifiers

- **Application on Consumer-Created Images**
 - Compare consumer and firm-created images to consumer brand perceptions measured in survey

- **Summary**
1. Collect Images Labeled with Perceptual Attributes

Brand perceptual attributes:
- \{glamorous, rugged, fun, healthy, reliable, trustworthy\}

Query Flickr: search for perceptual attributes and antonyms
(Karayev et al., 2013; Zhang, Korayem, Crandall, & LeBuhn, 2012; Dhar, Ordonez, & Berg, 2011; McAuley & Leskovec, 2012)
About 4,000 images per perceptual attribute and 23,404 in total

Liu Liu, Daria Dzyabura, Natalie Mizik
Brand Perception
2016 Stanford
glamorous drab rugged gentle
About 4,000 images per perceptual attribute and 23,404 in total
2. Extract Visual Features

Color
e.g., hue, saturation, brightness

Shape
e.g., line, corner, edge/gradient direction

Texture
e.g., local binary pattern, gabor filter

![Hue Changes](image)
![Saturation Changes](image)
![Brightness Changes](image)

![Images of color changes](image)

![Images of shape changes](image)

![Images of texture changes](image)
List of Features by Feature Type

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
</tr>
</thead>
</table>
| **Color** | RGB color histogram
| | HSV color histogram
| | L*a*b color histogram |
| **Shape** | Line: number of straight lines
| | Line: percentage of parallel lines
| | Line: histogram of line orientations & distances
| | Line: histogram of line orientations
| | Corner: percentage of global corners
| | Corner: percentage of local corners
| | Edge Orientation Histogram
| | Histogram of Oriented Gradients (HOG)
| **Texture** | Local Binary Pattern (LBP)
| | Gabor |
3. Train Classifiers

- **Input**: \(\{(x_i, y_i), i = 1, \ldots, N_p\} \)

- **Classification function**:
 \[
 f_p(x_i; w_p, b_p) = w_p^T x_i + b_p
 \]
 s.t. \(y_i f(x_i; w_p, b_p) > 0, i = 1, \ldots, N_p \) \hspace{1cm} (1)

Support Vector Machine (SVM)

\[
\min_{w_p, b_p} \frac{1}{2} w_p^T w_p + C \sum_{i=1}^{N_p} \xi_i
\]
 s.t. \(y_i(w_p^T x_i + b_p) \geq 1 - \xi_i, \xi_i \geq 0, i = 1, \ldots, N_p \) \hspace{1cm} (2)

- \(p \): perceptual attribute
- \(x_i \): D-dimensional visual feature vector for image \(i \)
- \(y_i \in \{-1, +1\} \): class labels
- \(\xi_i \): slack variables
Feature Selection

- Train SVM with single type of feature and feature combinations
- 80% train and 20% test
Classification Performance

Out of sample classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Best Classifier</th>
<th>Color</th>
<th>Shape</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>glamorous</td>
<td>74.1%</td>
<td>69.5%</td>
<td>70.0%</td>
<td>70.9%</td>
</tr>
<tr>
<td>rugged</td>
<td>73.3%</td>
<td>65.6%</td>
<td>70.0%</td>
<td>67.2%</td>
</tr>
<tr>
<td>trustworthy</td>
<td>70.2%</td>
<td>70.2%</td>
<td>67.8%</td>
<td>65.2%</td>
</tr>
<tr>
<td>fun</td>
<td>65.3%</td>
<td>60.4%</td>
<td>57.3%</td>
<td>55.6%</td>
</tr>
<tr>
<td>healthy</td>
<td>63.4%</td>
<td>63.4%</td>
<td>56.0%</td>
<td>51.4%</td>
</tr>
<tr>
<td>reliable</td>
<td>57.4%</td>
<td>56.2%</td>
<td>56.7%</td>
<td>53.0%</td>
</tr>
</tbody>
</table>
Classification Performance

Out of sample classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Best Classifier</th>
<th>Color</th>
<th>Shape</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>glamorous</td>
<td>74.1%</td>
<td>69.5%</td>
<td>70.0%</td>
<td>70.9%</td>
</tr>
<tr>
<td>rugged</td>
<td>73.3%</td>
<td>65.6%</td>
<td>70.0%</td>
<td>67.2%</td>
</tr>
<tr>
<td>trustworthy</td>
<td>70.2%</td>
<td>70.2%</td>
<td>67.8%</td>
<td>65.2%</td>
</tr>
<tr>
<td>fun</td>
<td>65.3%</td>
<td>60.4%</td>
<td>57.3%</td>
<td>55.6%</td>
</tr>
<tr>
<td>healthy</td>
<td>63.4%</td>
<td>63.4%</td>
<td>56.0%</td>
<td>51.4%</td>
</tr>
<tr>
<td>reliable</td>
<td>57.4%</td>
<td>56.2%</td>
<td>56.7%</td>
<td>53.0%</td>
</tr>
</tbody>
</table>

Feature composition

<table>
<thead>
<tr>
<th></th>
<th>Best Classifier</th>
<th>Color</th>
<th>Shape</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>glamorous</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>rugged</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>trustworthy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>fun</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>healthy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>reliable</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 = feature included in best classifier, 0 = feature not included in best classifier
Outline of the Talk

- Methodology
 - Collect training data
 - Extract image features
 - Train and validate classifier out-of-sample

- Application
 - Compare consumer and firm-created images to consumer brand perceptions measured in survey

- Summary
Consumer-Created and Firm-Created Brand Images

- Consumers: photos on Instagram (#brand)
- Firms: photos on official accounts on Instagram
- 56 brands from Apparel and Beverages
 - About 2,000 consumer hashtagged photos per brand and 114,367 photos in total
 - 72,089 photos in total from brands' official accounts.
Images of brand j: $I^j = \{I^j_1, \ldots, I^j_{N_j}\}$

Classifier of perceptual attribute p: $f_p(x; w_p, b_p)$

Compute the ratio of brand j images that express the perceptual attribute

$$F\{j, p\} = \frac{\sum_{i=1}^{N_j} \mathbb{1}(f_p(x_i; w_p, b_p) > 0)}{N_j},$$

where N_j is number of photos of brand j, x_i is the visual feature vector extracted from the i^{th} image.
Example: Percentage of Images Expressing Perceptual Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Prada</th>
<th>Eddie Bauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>glamorous</td>
<td>60.7%</td>
<td>47.1%</td>
</tr>
<tr>
<td>rugged</td>
<td>34.3%</td>
<td>40.6%</td>
</tr>
</tbody>
</table>

P-value < 0.0001
Compare Consumer and Firm Images to Brand Perception Survey

Young and Rubicams Brand Asset Valuator (BAV) (Lovett, Peres, & Shachar, 2014)
Pearson’s Correlation: Consumer vs. BAV, Consumer vs. Firm, Firm vs. BAV

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Perceptual Attribute</th>
<th>Consumer Image vs. BAV</th>
<th>Consumer Image vs. Firm Image</th>
<th>Firm Image vs. BAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparel (N = 29)</td>
<td>rugged</td>
<td>0.400* (p=0.0157)</td>
<td>0.708** (p=9e-6)</td>
<td>0.430** (p=0.0099)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.491** (p=0.0034)</td>
<td>0.820** (p=3e-8)</td>
<td>0.581** (p=0.0005)</td>
</tr>
<tr>
<td>Beverages (N = 27)</td>
<td>rugged</td>
<td>0.400* (p=0.0195)</td>
<td>0.440* (p=0.0156)</td>
<td>0.388* (p=0.0304)</td>
</tr>
<tr>
<td></td>
<td>healthy</td>
<td>0.451** (p=0.0091)</td>
<td>0.332 (p=0.0566)</td>
<td>0.314 (p=0.0673)</td>
</tr>
<tr>
<td></td>
<td>fun</td>
<td>0.346* (p=0.0387)</td>
<td>0.611** (p=0.0008)</td>
<td>0.228 (p=0.1422)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.198 (p=0.1608)</td>
<td>0.595** (p=0.0011)</td>
<td>0.364* (p=0.0404)</td>
</tr>
</tbody>
</table>

(*p < 0.05, **p < 0.01)

2 N=24 for when comparing firm images. 3 beverage firms don’t have official accounts on Instagram.
Pearson’s Correlation: Consumer vs. BAV, Consumer vs. Firm, Firm vs. BAV

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Perceptual Attribute</th>
<th>Consumer Image vs. BAV</th>
<th>Consumer Image vs. Firm Image</th>
<th>Firm Image vs. BAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparel (N = 29)</td>
<td>rugged</td>
<td>0.400* ((p=0.0157))</td>
<td>0.708** ((p=9e-6))</td>
<td>0.430** ((p=0.0099))</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.491** ((p=0.0034))</td>
<td>0.820** ((p=3e-8))</td>
<td>0.581** ((p=0.0005))</td>
</tr>
<tr>
<td>Beverages (N = 27)</td>
<td>rugged</td>
<td>0.400* ((p=0.0195))</td>
<td>0.440* ((p=0.0156))</td>
<td>0.388* ((p=0.0304))</td>
</tr>
<tr>
<td></td>
<td>healthy</td>
<td>0.451** ((p=0.0091))</td>
<td>0.332 ((p=0.0566))</td>
<td>0.314 ((p=0.0673))</td>
</tr>
<tr>
<td></td>
<td>fun</td>
<td>0.346* ((p=0.0387))</td>
<td>0.611** ((p=0.0008))</td>
<td>0.228 ((p=0.1422))</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.198 ((p=0.1608))</td>
<td>0.595** ((p=0.0011))</td>
<td>0.364* ((p=0.0404))</td>
</tr>
</tbody>
</table>

\(*p < 0.05, **p < 0.01\)

N=24 for when comparing firm images. 3 beverage firms don’t have official accounts on Instagram.
Pearson’s Correlation: Consumer vs. BAV, Consumer vs. Firm, Firm vs. BAV

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Perceptual Attribute</th>
<th>Consumer Image vs. BAV</th>
<th>Consumer Image vs. Firm Image</th>
<th>Firm Image vs. BAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparel (N = 29)</td>
<td>rugged</td>
<td>0.400* (p=0.0157)</td>
<td>0.708** (p=9e-6)</td>
<td>0.430** (p=0.0099)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.491** (p=0.0034)</td>
<td>0.820** (p=3e-8)</td>
<td>0.581** (p=0.0005)</td>
</tr>
<tr>
<td>Beverages (N = 27)<sup>2</sup></td>
<td>rugged</td>
<td>0.400* (p=0.0195)</td>
<td>0.440* (p=0.0156)</td>
<td>0.388* (p=0.0304)</td>
</tr>
<tr>
<td></td>
<td>healthy</td>
<td>0.451** (p=0.0091)</td>
<td>0.332 (p=0.0566)</td>
<td>0.314 (p=0.0673)</td>
</tr>
<tr>
<td></td>
<td>fun</td>
<td>0.346* (p=0.0387)</td>
<td>0.611** (p=0.0008)</td>
<td>0.228 (p=0.1422)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.198 (p=0.1608)</td>
<td>0.595** (p=0.0011)</td>
<td>0.364* (p=0.0404)</td>
</tr>
</tbody>
</table>

(*p < 0.05, **p < 0.01)

² N=24 for when comparing firm images. 3 beverage firms don’t have official accounts on Instagram.
Pearson’s Correlation: Consumer vs. BAV, Consumer vs. Firm, Firm vs. BAV

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Perceptual Attribute</th>
<th>Consumer Image vs. BAV</th>
<th>Consumer Image vs. Firm Image</th>
<th>Firm Image vs. BAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparel (N = 29)</td>
<td>rugged</td>
<td>0.400* (p=0.0157)</td>
<td>0.708** (p=9e-6)</td>
<td>0.430** (p=0.0099)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.491** (p=0.0034)</td>
<td>0.820** (p=3e-8)</td>
<td>0.581** (p=0.0005)</td>
</tr>
<tr>
<td>Beverages (N = 27)</td>
<td>rugged</td>
<td>0.400* (p=0.0195)</td>
<td>0.440* (p=0.0156)</td>
<td>0.388* (p=0.0304)</td>
</tr>
<tr>
<td></td>
<td>healthy</td>
<td>0.451** (p=0.0091)</td>
<td>0.332 (p=0.0566)</td>
<td>0.314 (p=0.0673)</td>
</tr>
<tr>
<td></td>
<td>fun</td>
<td>0.346* (p=0.0387)</td>
<td>0.611** (p=0.0008)</td>
<td>0.228 (p=0.1422)</td>
</tr>
<tr>
<td></td>
<td>glamorous</td>
<td>0.198 (p=0.1608)</td>
<td>0.595** (p=0.0011)</td>
<td>0.364* (p=0.0404)</td>
</tr>
</tbody>
</table>

(*p < 0.05, **p < 0.01)

N=24 for when comparing firm images. 3 beverage firms don’t have official accounts on Instagram.
Summary

- Photos consumers share on social media contain valuable brand information
- Extracting this information requires new tools
- Develop methodology for extracting brand perceptions from images, and demonstrate that some brand perceptual attributes can be represented with basic elements of visual design
- Demonstrate that for some perceptual attributes, photos consumers post online represent their perception of the brand
Thank you

Liu Liu (liliu@stern.nyu.edu)
Daria Dzyabura (ddzyabur@stern.nyu.edu)
Natalie Mizik (nmizik@uw.edu)

References II

Color histogram (RGB) computed from top 25 images that are most representative of each perceptual attribute and its antonym
Recognizing Image Style (Karayev et al., 2013)

- Classification task: image style (e.g., Minimal, Vintage)
- Data: Flickr
- Classifier: Deep Convolutional Neural Network
- Average per-class accuracy: 78%