This is a data-driven, applied statistics course focusing on the analysis of data using regression models. It emphasizes applications to the analysis of business and other data and makes extensive use of computer statistical packages. Topics include simple and multiple linear regression, residual analysis and other regression diagnostics, multicollinearity and model selection, autoregression, heteroscedasticity, regression models using categorical predictors, and logistic regression. All topics are illustrated on real data sets obtained from financial markets, market research studies, and other scientific inquiries. The goal of the class is that students begin to develop the skills to be able to collect, organize, analyze, and interpret regression data.

Text:
Samprit Chatterjee and Jeffrey S. Simonoff, *Handbook of Regression Analysis*, John Wiley and Sons (2013). [Highly recommended, but not required; you can do all of the work required for the class without it. In any event, I believe that it is a useful applied guide to have.]

The course grade will be based on homeworks/projects only. Grades will be determined based on a class–wide curve (that is, there will not be separate curves for undergraduates and graduate students). The course will be very heavily computer oriented; if you have not used a statistical package before, you may be in for some rough going. The “official” package for the course is Minitab, which is available online, and for rent or purchase (I highly recommend that you either rent or purchase the package). You may use any package you wish, on any machine that you wish, as long as it performs the necessary calculations; any deficiencies on the part of the package are the responsibility of the student. I can provide additional support for Minitab and R, but relatively little for SAS, and none at all for SPSS, Stata, Systat, and STATISTICA (although these packages are able to perform all of the necessary modeling methods for this class). Excel will not be an acceptable tool for analyses in this class, and the student version of Minitab is missing some necessary techniques that are included in the full version, and will thus not be an adequate package to use. You should understand that while I am very experienced with R, and am happy to provide support for it, ultimately it will be your responsibility to climb the R learning curve yourself, which can sometimes be a challenge from both a computing point of view and a statistical one.
Class will meet according to the Stern graduate calendar, not the standard university calendar. See the Stern website for details on the differences between the two calendars. It is crucially important that all students review basic regression material before the first class. Please see the material under Required work before first class session below.

You will be responsible for obtaining your own data for the assignments. Do not merely take data from a textbook; obtain your data from original data sources. You will be required to provide complete source information for your data (a URL if the data come from the World Wide Web, or a photocopy of the appropriate page(s) if the data come from a printed source). Generally speaking, you will have roughly two weeks to complete each assignment from when it is given out, although in some cases it will be expected that material that is covered in class after the assignment is handed out (but before it is due) will be used by you in the assignment. Assignments must be typed or word processed; handwritten assignments will not be accepted.

The Stern Code of Conduct states that you commit to “Exercise integrity in all aspects of our academic work including, but not limited to, the preparation and completion of exams, papers and all other course requirements by not engaging in any method or means that provides an unfair advantage.” Further, you commit to “Refrain from behaving in ways that knowingly support, assist, or in any way attempt to enable another person to engage in any violation of the Code of Conduct. Our support also includes reporting any observed violations of this Code of Conduct or other School and University policies that are deemed to have an adverse effect on the NYU Stern community.” This applies to this class in the following specific ways (in addition to general prohibitions on cheating, plagiarism, and so on):

1. All data analyses must be done independently. I will be happy to answer questions about your analyses (either in person or via e-mail), but you’ll probably find that as the semester goes on I’ll be increasingly likely to answer “What do you think?” to many questions! Please do not give me preliminary drafts of your homework to check. I will answer specific questions (if possible), but will not review drafts to provide general comments or reactions, including whether anything necessary was left out, or whether all of the statements you are making are correct. You can get help from classmates or people outside of the class on computational issues (how to do something in Minitab, for example), but not on conceptual and/or substantive statistical issues. In particular, it is not permitted for you to show your assignment to anyone else in the class, or for you to look at anyone else’s assignment, whether that assignment is from this semester’s class or a previous class.

2. Data sets cannot be taken from a source where a similar analysis is already given. Violation of these conditions can lead to loss of all credit for the assignment involved at a minimum, with more severe sanctions possible after consultation with the Dean’s Office.

A friendly piece of advice: don’t hand in the assignments late! That is the quickest way to get in trouble in a course like this. An assignment is considered late if it is turned in after I have left Stern for the day on the day that it is due. There will be progressively bigger...
penalties for increasing amount of lateness of an assignment (1.5 points out of 10 up to one class late, 3 points up to two classes late, 6 points up to three classes late). No assignments will be accepted for credit more than three classes late under any circumstances. Work responsibilities in general, including work–related travel in particular, will not be accepted as an excuse for lateness of an assignment; it is your responsibility to get the assignment to me on time, even if you are not at Stern that day. If you have any questions about the grade you have received on a homework, you must raise it with me by the end of the class session following the session in which the homework was returned to the class, or within one week of when the graded homework was made available to the class if the homework was due at the last class session of the semester; no grading adjustments will be considered after that time. Don’t wait until the last minute to do an assignment, as you might find that access to School (or any other) computing facilities is difficult or impossible (the network might be down, your laptop’s hard drive might crash, or your printer might run out of ink); such lack of access will not be accepted as an excuse for lateness. Please keep in mind that you will not be graded based on how “exciting” your data are, but rather on the quality of your analysis. Don’t waste time trying to find the “perfect” data set; you’re working on a homework assignment, not a master’s thesis. If you find that you’re spending more time finding data than you are on analyzing it and writing up the analysis, you are allocating your time incorrectly.

If you have a qualified disability and will require academic accommodation during this course, please contact the Moses Center for Students with Disabilities (CSD, 998-4980) and provide me with a letter from them verifying your registration and outlining the accommodations they recommend.

I have had complaints from students in the past regarding distractions caused by students using laptops in class. If you want to use a laptop in class for note taking, or to follow along with the discussion or statistical analyses done in class, I ask that you sit in the back of the classroom. Of course, surfing the web, answering e-mails, instant messaging, etc., are not appropriate uses of a laptop (or any electronic device) under any circumstances.

The final grade for the course will be based on the grades on the assigned homeworks only; there will be no opportunities for makeup or extra credit work, and an incomplete grade for the course will not be considered simply to make up assignments that were not done. You will not have the opportunity to resubmit a homework for regrading that has been corrected based on my comments under any circumstances. Thus, assignments for which you receive no credit will have a strong detrimental effect on your grade, and as few as two such assignments could result in a failing grade in the course. The actual curve used in the course will depend on the distribution of the average homework scores of the class, but in the past the lower cutoff for A grades (A and A–) has been roughly 8.5 (out of 10), while the lower cutoff for B grades (B+, B, and B–) has been roughly 7.5, with averages less than that corresponding to grades of C+ and lower (there is no guarantee that these cutoffs will apply this semester, however). Extremely poor performance on the homeworks can certainly result in grades in the D or F range. Please note that you must earn a grade of at least B– in order for the course to count towards the VEE (Validation by Educational

© 2019, Jeffrey S. Simonoff
Experience) requirement of the Society of Actuaries; no special accommodation will be provided for students who do not earn this grade based on the grades on their assignments.

Most importantly — **THIS COURSE IS LIKELY TO BE TIME–CONSUMING!** If you’re taking a particularly heavy course load this semester, or are going to be doing a lot of traveling (work–related, for example), this is probably not the course for you! In particular, since it takes time to build up the knowledge necessary for adequate multiple regression analysis, the homeworks will be relatively widely separated in the first half of the semester, but will come more rapidly in the second half.

I will be giving out handouts in many of the class sessions during the semester. If you know that you’re going to miss class, you can get in touch with me beforehand, and I will save copies for you. I cannot guarantee to have copies left over for you after class is over — you will probably have to get copies from a classmate. You should make every effort not to miss classes, however, since the material covered in class will be far more relevant to you than is material in the textbook.

Prerequisite: Introductory statistics core course. More generally, the prerequisite is an introductory statistics class that includes discussion of descriptive statistics and univariate statistical inference (confidence intervals, prediction intervals, and hypothesis testing), and exposure to simple regression methods.

Required work before first class session: I will assume a basic understanding of the simple regression model from the beginning of the class. You should review this material from your introductory statistics course **before** the first class session. You should download, print out, and read the following handouts: *Regression — the basics* and *Purchasing power parity — is it true?*. You are responsible for all of the material in those handouts, although we will **briefly** discuss them in class. You should also download *Homework 1* and answer all of the questions. I will give out the answers to these questions on the first day of class.

Syllabus

Chapters refer to the Chatterjee and Simonoff book. Corresponding class sessions given are only approximate.

Classes 1–4

1. Review of basic regression concepts — Chapter 1

Class 4

2. Matrix approach to regression — Chapter 1

Classes 4–7

3. Multiple regression — Chapters 1, 2

Classes 8–10

4. Checking assumptions of regression — Chapters 1, 2, 3

© 2019, Jeffrey S. Simonoff
5. Addressing violation of assumptions: choosing the correct predictors (model selection), autocorrelation — Chapters 2, 4, 5

Classes 17–21

6. Analysis of variance and covariance and nonconstant variance — Chapters 6, 7

Classes 22–27

7. Modeling group membership: logistic regression — Chapters 8, 9

The following is a list of the handouts that will be given out in class, separated by broad coverage.

Simple regression
- Regression — the basics
- Purchasing power parity — is it true?

Multiple regression, including use of partial F–tests
- Multiple regression
- Getting what you pay for: dinner prices in New York City
- Mortgage rates
- Purchasing power parity, revisited

Regression diagnostics
- Regression diagnostics

Transformations
- Transformations in regression
- Predicting total movie grosses after one week
- Modeling Lowe’s sales

Model selection
- Estimating a demand function

Time series data
- Ordinary least squares estimation and time series data
- Estimating a demand function — it’s about time
- Eruptions of the Old Faithful Geyser

Analysis of variance and covariance
- One–way ANOVA
 - *Consumer Reports* ratings of cameras
- Two–way ANOVA
- Modeling television viewership

© 2019, Jeffrey S. Simonoff
Analysis of covariance
CAPM: Do you want fries with that?

Logistic regression
- Logistic regression — modeling the probability of success
- The flight of the space shuttle Challenger
- News flash! Smoking makes you live longer!
- Predicting bankruptcy in the telecommunications industry
- The sinking of the *Titanic*
- What makes a top university top?
MYTHS ABOUT DATA ANALYSIS

1. The results of a data analysis hinge on the statistical significance of hypothesis tests.

 Hypothesis tests are a useful tool to help determine what is going on in a data set, but they have no inherent superiority over other tools, such as graphical methods. Hypothesis tests can give misleading results when samples are small, when samples are very large, and when assumptions being made do not hold. Don’t fall in love with the number .05 — it is not a magic number!

2. There is a single correct way to analyze a given data set.

 There are many different ways to analyze a typical data set, each with their own strengths and weaknesses. Usually any reasonable analyses will end up with similar results and implications. There is more than one path to the summit!

3. When you come to a point in your analysis where you have to make a decision, you only can choose one possibility and follow it until you’re done.

 Good data analysis is a process of following up leads that often reach dead ends. If you’re not sure what path to take at a given point, try both paths and see what happens — the only thing you lose is a little time. The answer to the question “I'm not sure if this will help; what should I do?” is always “Try it and see.” Any choices you make that you can justify are okay, as long as you tell people what you are doing.

4. The goal of an analysis is to ultimately come up with a model that has the strongest measures of fit possible.

 There is only one goal in any data analysis — to uncover what is actually going on in the data. All data analytic decisions should be driven by that concern, not by whether they make the R^2 (or F, or t) larger. Don’t succumb to “R^2 envy” (“Ha ha! Mine is bigger than yours!”). Good data analysis is very much like good detective work — its goal is not to verify our own beliefs, but rather to search for the truth.