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Where Do Betas Come From?
Asset Price Dynamics and the
Sources of Systematic Risk

John Y. Campbell
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Jianping Mei
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In this article we break assets’ betas with common
Jfactors into components attributable to news about
future cash flows, real interest rates, and excess
returns. To achieve this decomposition, we use a
vector autoregressive time-series model and an
approximate log-linear present value relation. The
betas of industry and size portfolios with the mar-
ket are lavgely attvibuted to changing expected
returns. Betas with inflation and industrial pro-
duction reflect opposing cash flow and expecied
return effects. We also show bow asset pricing the-
ory restricts the expected excess return compo-
nents of betas.

Betas, or sensitivities of asset returns to underlying
sources of risk, are central to modern finance. Betas
are used by academics and practitioners to model and
control systematic risks. Betas also determine expected
asset returns in the capital asset pricing model (CAPM)
of Sharpe (1964) and Lintner (1965) and fts descen-
dents such 2s the intertemporal CAPM of Merton
(1973) and the arbitrage pricing theory of Ross (1976).
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Given their importance, it is natural to ask how bertas are deter-
mined. Campbell and Shiller (1988) and Campbell (1991) have shown
that unexpected returns can be written as an approximate linear func-
tion of changing expectations of future cash flows, real interest rates,
and excess returns. They obtain this result by taking a log-linear
approximation to an accounting identity, so the result is not condi-
tional on the valtdity of any particular asset pricing model. Since betas
are scaled covariances of returns with sources of risk, the Campbell~
Shiller decomposition implies that betas depend on the covariances
of news about cash flows, real interest rates, and future excess returns
with sources of risk. In this article we make a first attempt to estimate
the relative imporrance of these beta components,!

If one is willing to impose an asset pricing model, then it is possible
to go further than this. An asset pricing model derives expected excess
returns from bertas and market prices of risk. Thus, by imposing an
asset pricing model, one can substitute the components of betas that
are related to expected future excess returns. One can then show
how the underlying covariances of assets’ cash flows with sources of
risk determine their betas. We carry out this exercise for the CAPM
and briefly discuss more general models.

Our work bridges a gap between two common modes of analysis
in empirical finance: cross-sectional anzlysis of multifactor models,
and fundamental analysis using the present-value relation. The former
analysis breaks risk down intc sensitivities to various factors, while
the latter distinguishes between cash flow risk and discount rate risk.
Here we combine these two models, using both contemporaneous
cross-sectional information and time-series information to describe
the dynamic behavior of asset returns.

In Section 1 we explain our theoretical framework and show how
time-series econometric methads can be used to construct empirical
proxies for the various components of betas. In Section 2 we decom-
pose betas of industry and size portfolios into cash flow, real interest
rate, and excess-return components. Section 3 explores the restric-
tions on excess-return components implied by asset pricing models
with constant betas. Section 4 concludes.

1. Where Betas Come From: A Theoretical Framework

1.1 The Campbell-$hiller approximation
In general, stock prices and returns are affected by changing expec-
tations about dividends and required returns. The diffculry is that

' Ouc paper builds an the vast literacuce showing that expected asser returns change through time,
forexample, Campbell (1987), Fama and French (1988a, 1988h, 1989}, Keim and Srambaugh (1984,
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the standard present-value relation is nonlinear when expected returns
vary through time. This makes it intractable except in 2 few special
cases.

Campbell and Shiller (1988) propose a log-linear approximation
to the standard model. They argue that the approximation is bath
tractable and surprisingly accurate. We follow Campbell (1991) and
define the one-period log real holding return on stock éas b, =
log(P,.. + D) — log(P,), where P, is the real stock price mea-
sured at the end of period ¢ (ex dividend), and D, , is the real dividend
paid during period ¢ The right-hand side of this identity is a nonlinear
function of the log stock price and the log dividend; it can be approx-
imated, using a first-arder Taylor expansion, as

bi.r+1 = k+ 8P, + (1 - p)dxgz+1 - Pio (1)

where lowercase letters are used for logs. The parameter p comes
from the linearization and is a2 number slightly smaller than 1, and
the constant & = —lag(p) — (1 — p)log(1/p — 1). Equaticn (1)
replaces the log of the sum of price and dividend with a weighted
average of log price and log dividend. Intuitively, the future log stock
price gets a larger weight than the future log dividend because a
given percentage change in the stock price is absolutely larger than
the same percentage change in the dividend.

When the log holding return on stock is linearized around the
mean log dividend-price ratio & — p, the parameter p = 1/(1 + exp(d
— p)). We linearize the log returns on 2ll assets around a commaon
mean log dividend-price ratio, so that p is the same for all assets. This
forces all asset returns to be equally sensitive to changes in real
interest rates. In practice, cur results are robust to variations in p
within a plausible range, so the use of 2 common p across assets
should not he too problematic.

Equation (1) can be thought of as a difference equation relating
Dirt0 Piers dirrs And by, It holds ex post, but it 2lso holds ex ante
as an expecational difference equation. Campbell and Shiller impose
the terminal condition that lim;_,, £,0/p, .., = 0. This condition rules
out “rational bubbles that would cause explosive behavior of the
log stock price. With this terminal condition, the ex ante version of
(1) can be solved forward to obtain

k < . <
L= 1 — + (1 — p)E, E Pl — E, 2 p‘rh:;r+1+;- (2)
I =0 =0

Lo and MacKinlay (1988}, and Poterba and Summers {1988). There has also been some crass-
secrjonal wark relacing betas to observable characeeristics of firms, far example Rosenberg and
Marathe (1975} and Chan and Chen {1991], but cthis wark does not make the distinerion emphasized
here bermeen diffetent saurces of news.
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This equation is useful because it enables one to calculate the effect
on the stock price of a change in expected stock returns. It says that
the log stock price p,, can be written as a constant /{1 — p) plus
the expected discounted value of all furure dividends 4,,,,,, minus
future returns 4,4, ., discounted at the constant rate p. If the stock
price is high today, this must mean that future expected dividends
are high unless returns are expected to be low in the future. Note
that (2} is not an economic model but has been derived by approx-
imating an identity and imposing a terminal condition. It is best
thought of 2s a consistency condition that must be satisfied by any
reasonahle set of expectations.

Campbell (1991) uses Equation (2) to substitute p,, and p,,,, out
of (1). This gives a decomposition of the unexpected stock return or
stock-return innovation, which we write as b,

bx‘,r+1 = bx‘,r+1 - Er‘bi,r+1

=(Ey, — E,) {2 p‘rAdf,z+1+j - E ijf,z+1+;}- (3)
=0 £=1

Once again, this equation should be thought of as a2 consistency
condition for expectations. If the unexpected stock return is negative,
then either expectations of future dividend growth must be revised
downward, or expectations of future stock returns must be revised
upward, or both. There is no behavioral model behind (3); itis simply
an approximation to an identity.

These formulas concern real log stack returns, but we work with
excess log stock returns over a short-term interest rate. We define
Cr1 = Pypr — Fip, Where v, is the real return on a one-month
Treasury bill. We use &,,,, to denote the innovaticn in e,.,,. Then

oo oo

Lkl (E:+1 — E) Eﬂ‘rAdf,HH_f - Eﬂ‘r.rwuj - ijei,r+l+j}

4= = =1

Jut]

= Chirr T Borv1 T Bairel- (4)

The second equality in (4) introduces simpler notation for the com-
ponents of the unexpected excess stock return €,,.,. The variable
&40+ tepresents revisions in expected future dividends or news about
future dividends on asset 4, whereas &,,,, is news about future real
interest rates and é,,,,, is news about future excess returns on asset .

Equations (1)-(4) hold only as approximations, but here we treat
them 2s exact. Campbell and Shiller (1988) study approximation error
in (1) and (2), and an appendix to this article, available from the
authors on request, studies approximation error in (3) and (4). In all
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these equations the approximation error seems to be small enough
for U.5. stock market data that it should have no important effect cn
our results.

1.2 A beta decomposition
We define beta by using unconditional variances and covariances of
innovationsin returns and factors. That is, we study the unconditional
covariance of the return innovation with a factor innovation, divided
by the unconditional variance of the factor innavaticn. This is neither
a full conditicnal beta (which would use conditional variances and
covariances) nor 2 straightforward unconditional beta (which would
use returns themselves rather than innovations in returns). Bera as
defined here has the advantage that it can be broken into components
in a relatively simple way. If all elements of the conditional variance-
covariance matrix of innovations are constant or changing in pro-
portion to one another, then our beta equals the full conditional beta.
Under these conditions asset pricing theory can be used in a deeper
analysis of beta, we discuss this later, but for now we simply take cur
beta as a useful summary measure of an asset's sensitivity to a factor.
The most familiar type of beta is 2 market beta. Our definition of
market beta is

B... = Cov(g, &,)/Var{é,). (9)

Here &, is the unexpected excess return on asset { and &, is the
unexpected excess return on the market. (For notational simplicity
we suppress time subscripts on these and similar variables wherever
possible.) Equation (4) allows us to decompose g, ,, as

,6 _ Cov(ézﬁr ém) _ COV(ér: ém) . Cov(éeil ém)
g Var(&,,) var(é,) var(2,,)
= ﬁdi,m - ISr,m - ﬁe;’,m’ (6)

where §, .. is the market beta of news about asset i's future cash flows,
8, .. is the market beta of news about future real interest rates, and
8., is the market beta of news about asset #'s future excess returns.

More generally, ane may want to work with K common factors in
asset returns. Qur definition of heta with the kth factor f, is

B.x = Cov(&, f)/Var(f). @)

Equation (4) allows us to decompose this beta as follows:
B, = Cov(eu fu) _ Cov(é, fi) _ Cov(Z., fi)

o var(f) var (f,) var(f,)

= rBa'f,k - 13r,1e - 693,.@- (8)
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Equations (G) and (8) give the basic decomposition we use in our
empirical work.

1.3 Empirical proxies for beta components

In order to implement our beta decompasition, we need to construct
empirical proxies for news about future cash flows, excess returns,
and real interest rates. To do this, we assume that we observe Nexcess
returns aver a one-month Treasury-bill return. The first excess return
is on the value-weighted market portfolio of stocks. We pastulate that
expectations of these excess returns are linear in a vector of state
variables x, with L elements x,, I = 1,...,L. The first of these elements
is the excess return on the market, and the second is the rezl return
on a one-manth Treasury bill, while the other elements are variables
known to the market by the end of period & Thus, the excess return
on any asset ¢an be written as

ex',H—L = a’:'xf + é:’,:'}—l (9)

for some L-element column vector a,. The expected excess return on
the market is given by 4] x,, and the unexpected excess return on the
market is &, ...

Next we assume that the state vector follows a first-order VAR:

x.r+1 = er + ££+1) (10)

where we again use the notational convention that %,,, is the inno-
vaticn in x,, ;. The assumption that the VAR is first-order is not restric-
tive since a higher-order VAR can always be rewritten in first-order
form, as discussed by Campbell and Shiller (1988) among others.
The matrix I1 is known as the companion matrix of the VAR, The
assumptions we have made imply that 4] is the first row of I1. Given
the VAR model, revisions in lang-horizan expectations of x,,, are

(Bry — E!)x.r+j+l = Il%,,,. (11)

Finally, we define i, to be an Z-element column vector whose second
element is one and whose other elements are all zero. This vector
picks the real interest rate out of the state vector. Then Equation (11)
and the definitions of &, and &, in (4) imply that the components
of asset returns can be written as follows:

pay(f — pI)7'%,,,

5

L)

3
]

€am = él.:-ﬂ. + G+ Pa;)(f - pH)H1£r+1:

é =u— ﬁn)ﬁl-i':ﬂr

éea’ = pa:‘([ - pn)_1£f+1r
8= Eipy T (& + pad)(d — pIl) %, . (12)
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Innovations in expected future excess returns and cash flows are
determined by innovations % to the economic state variables, by the
matrix II governing the evolution of the state variables, by the vectors
a, that map state variables to expected returns, and by unexpected
asset returns &,,,,. The term (f — pIl)"'%,,, represents the revision
actime ¢+ 1 in the discounted multiperiod forecast of the state vector
into the infinite future. Appropriate elements are taken from this state-
vector forecast revision to form the components of asset returns.

Once we have the asset return components abhove, it is straightfor-
ward to take ratios of covariances to variances to construct betas. In
our empirical work we look at betas with the innovaticns in the
economic state variables X, ,. That is, we use state-variable innova-
tions as factors, as in Chen, Roll, and Ross {1986) or Ferson (1990).
The innovation in the market return is just the first element of %, ,,.
When we need the factors to he orthogonal, we can orthogonalize
the vector of VAR innovations in the manner of Sims (1980).

Empirical Results

2.1 Data and econometric methods

In this section we apply our methods to study the systematic risks of
industry and size portfolios. The industry portfolios are 12 value-
weighted portfolios constructed by using two-digit SIC codes. The
size portfolios are 10 value-weighted portfolios based cn size deciles
and using the market value of equity outstanding at the beginning of
each year.?

We use several aggregate variables as the elements of the state
vector. The first two elements must be the market excess return and
the real interest rate. The remaining variahles are the dividend yield
on the market portfolio, the inflation rate, and the growth rate of
industrizl production. Qur measure of the market return {s the return
on the value-weighted New York Stock Exchange (NYSE) index. The
dividend yield on this index is calculated in standard fashion by taking
total dividends paid over the previous year relative ta the current
stock price. The real interest rate is the one-month Treasury-bill rate
minus the CPI inflation rate, where both these variables are Ibbotson
Associates data series provided by the Center for Research in Security
Prices (CRSP). The seasonally adjusted monthly real industrial pro-
duction index is taken from the Citibase tape. Our sample covers the
time period from 1952:1 to 1987:12. Following Campbell (1991} we
set p = 0.9962, which corresponds to an annual mean dividend-price
ratio of 4.7 percent.

*We ate grareful to Wayne Ferson for providing us with these portfolio returns. Ferson and Harvey
(1991) give more detail an che construction of the partfolios.
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To estimate the parameters in Equations (9) and (10) and to cal-
culate the variance—covariance matrix of their error vectors, we esti-
mate (9) and (10) jointly across 2ll portfolios and state variables,
using Hansen's (1982) generalized method of moments. Let us denote
the entire set of parameters by 4 and the variance-cavariance matrix
of these parameters by V. To calculate 2 standard error for a statistic
such as the cash flow beta, we write the statistic as 2 nonlinear function
J{¥) of the parameter vector . The standard error for the statistic
can be estimated in standard fashions as \/f,(y)' V£, (y).

In our empirical work, we have tried two variants of this basic
estimation procedure. The first variant allows for sampling error both
in the parameters of Equations (9) and (10) and in the covariances
hetween &, and %,,,. This requires that we treat the covariances,
Q, as parameters of the model, so the number of parameters to be
estimated increases very rapidly with the VAR lag length. Accordingly,
we have only implemented this variant of our procedure with one
VAR lag.

The second variant takes account only of sampling error in the
parameters of Equations (9) and (10). In effect, the covariances
between &,,,, and %,,, are treated as known. One could think of this
variant as analyzing sample betas rather than population betas. This
procedure significantly reduces the number of parameters to be esti-
mated, allowing us to explore higher-order VAR systems.

We have found that our empirical results are similar regardless of
the variant that we use, and that they are insensitive to VAR lag length
for the second variant. Thus, we present our beta decompositian
resules using the first variant of our method with a first-order VAR
system.

2.2 A beta decomposition for industry portfolios

Table 1 shows the betas of industry portfolios with the aggregate
stock market. The first column shows the overall market beta for each
portfolio. This is decomposed in the second and third columns into
market betas of cash flow news and excess return news, 3, ,, and 8., .
The future real interest rate beta, 8, , is estimated to equal 0.012 aver
this sample period, 25 reported at the bottom of Table 1. Thus, the
second column shows the contribution to each portfolio’s market
beta of news about its cash flows. The negative of the third column
shows the contribution to each portfolio's market heta of news about
its future expected excess returns.

Several features of Table 1 are worth noting. First, the absolute
values of excess-return hetas are a2lways much larger than the absolute
values of cash flow betas. This reflects the fact, documented by Camp-
bell (1991) and Campbell and Ammer (1993) for the aggregate stock
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Table 1
Decompasition of market betas for industey partfalios
ﬁ;‘.m ﬁrﬂ.m ﬁﬂ.m‘ ﬁrﬂ.rﬂn R_I
Petraleum. 0,949 a.171 —0.789 0.779 0.028
(0.042) (0.207) (0.207) (0.410) {0.855)
Finance/real estate 0.994 4.029 —0.978 0.690 0047
{0.023) (0.163) (3.158) (0.224) (0.986)
Cansumer durables 1.122 0.060 -1.073 1.219 0.064
{0.033) (0.204) (@.201) (0.274) {1.315)
Basic industries 1.078 0.381 —0.708 1.197 0.033
(0019} (0.150) (0.148) (0.214) {0.864)
Faood/tohacca 0853 3.235 —0.630 0.684 0.437
(0.029) (0.1513 (3.1373 (0.377) (0.784)
Constructisn, 1.171 0.098 —1.084 1.081 0.054
{0.043) (4.212) (0.211) (0.269) (1.293)
Capital goods 1.063 0.372 —0.703 1.689 0.064
{0.024) {0.222) {0.217) {0.387) (1.282)
Transpartation 1.18¢ 0273 —0.918 1.092 0.037
{0.037) {1.210) (0.203) (0.270} (1.119)
Utilities 1.4619 —0.125 —0.756 0,407 0.05%0
{0.030) (0.141) (0.155) (0.304) {0.750)
Textile fteade 1.043 0.359 —0.694 1.222 3.044
(0.033) (0.215) (0211} (0.400) {1.153)
Services 1.164 —.151 —1.327 0.733 0.056
(0.041) {0.300} £0.299) (0.546) €1.393)
Leisure 1.209 a.178 —1.042 1214 0.063
(0.048) {0.257) {0.256) {0.449) (1.505})

#.. is the rewurn sensitivity to the market return. §,,,, is the sensitivity of cash flow news to the
market reruen, g2, is the sensitivity of excess return news to the marker rerurn, g, 15 the sensitiviey
of cash flow news to the market's cash flow news. 8, which is the sensicivity of real interest rate
news ta the market cecurn, is equal ta 0.0132. The number in parencheses below B2 gives the standard
deviation of conditional expecred excess returns, We use the value weighted NYSE index for the
market portfolio. The sample cavers the time period from 1952:1 to 1987:12.

market, that much of the variability in stock returns is associated with
changing expected future excess returns.

Second, the estimated cross-sectional pattern of cash flow betas is
quite reasonable. Cyclical industries such as hasic industries, capital
goads, and textiles have high cash flow betas, whereas stable indus-
tries such as utilities and services have low (indeed slightly negative)
cash flow betas. This pattern is not just a replication of the pattern of
overall betas; services, for example, is an industry with high overall
beta but low cash flow beta. Our model attributes the high overall
beta of this industry to the fact that its expected return is highly
sensitive to market expected returns. bt is important to note, however,
that the standard errors for cash flow betas are zlways rather large.

An alternative measure of cyclicality is the beta of an asset's cash
flow news with the marker’s cash flow news (as opposed to the beta
with the overall market return, which is also driven by news about
future market returns). The last column of Table 1 presents estimates
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of this alternative beta. We use the notation 8, 4, to indicate that this
is the sensitivity of news about future cash flows on asset 4 &, to
news ahout future cash flows of market, &,,.. We find that the cash
flows of cyclical industries are more sensitive to changes in market
cash flows; in fact, 8, . 1S always fairly close to the overall market
beta of an industry. This result should be interpreted cautiously,
however, because the standard errars for 8,,,,. estimates are even
larger than the standard errors for 8, estimates.

Since cash flows are a residual in our approach, one might suspect
that portfolios with large cash flow betas in Table 1 are also portfolics
whose excess returns are hard to forecast. The fifth column presents
the R?-statistic and the standard deviation of the fitted value for each
excess-returns forecasting regression. There is no clear relationship
berween the forecastability of monthly excess returns and our esti-
mates of cash flow and excess-returns betas; evidently the longer-run
dynamics of the excess-returns forecasts, as captured by the VAR
system, are critical in determining excess-returns betas.

Next we study the betas of the overall market and of industry port-
folios with innovations in economic state variables. The left-hand
panel of Table 2 shows the estimated betas of news about cash flow
with innovations in the real interest rate, the market dividend vyield,
the inflation rate, and the growth rate of industrial production. In
each case betas are defined in the manner of Equation (7) as covar-
iances of asset returns with factors divided by factor variances, but
we do not orthogonalize the factors.

The table shows that an unexpected increase in the ex post real
interest rate is assaciated with a significant increase in expected future
cash flows on almost all portfolios. Positive innovations in industrial
production also increase expected future cash flows, although this
effect is much weaker. Increases in the market dividend yield have
no strong relationship to cash flow news, and increases in inflation
rates are associated with downward revisions in expected future cash
flows. The results for the real interest rate and for inflation are con-
sistent with one another, since ex post real interest rate innovations
are strongly negatively correlated with inflation innovations (and
would be perfectly correlated if we included the nominal interest
rate in the VAR system). These results contradict the notion that real
cash flows to holders of equity are insensitive to inflation. Of course,
Fama and Schwert (1977) and many other authors have shown that
stock returns are sensitive to inflation, but the cash flow compaonent
of stock returns has not been investigated separately.

The botiom row of Table 2 shows the beta of news about future
real interest rates with innovations in the state variables. Future real
interest rates rise with the current real interest rate and fall with the
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current inflation rate but are only weakly associated with innovations
in the dividend vield and industrial production.

The right-hand panel of Table 2 shows the estimated betas of news
about future expected excess returns with innovations in economic
state variables. We can see that unexpected increases in the market
dividend yield are strongly paositively related to news about future
expected excess returns. Other state variables are only weakly cor-
related with news about future excess returns.

Since the overall return beta with the innovation in a state variable,
8. i8 just the cash flow beta minus the real interest rate beta minus
the excess-returns beta, we can comhine the different parts of Table
2 ta get the implied values for 8,,. For example, an unexpected 1
percent increase in the annual ex post real interest rate is associated
with 2 0.08 percent (0.20% — 0.15% + 0.03%) excess return on the
aggregate market. For both the aggregate market and the individual
portfolios, the positive impact of the real interest rate through increased
cash flows and reduced future excess return outweighs the negative
impact through increased future real interest rates. As one would
guess, the effect of an inflation innovation is the opposite of the effect
of an ex post real interest rate increase: When inflation goes up, stock
returns are typically negative because the negative impact through
cash flows and future excess returns outweighs the positive effect of
declining future real interest rates.? To put it another way, stack
portfolios would be even more sensitive to inflation if real interest
rates were constant.

The pattern of results for induscrial production is also interesting.
We find that the generally positive impact of industrial production
growth on cash flow is largely offset by the negative impact of an
increase in expected future excess returns. This explains the other-
wise puzzling fact that good news ahout production growth has little
impact on current stock returns. Qur results enrich the story told by
Chen (1991), who discavered that industrial production innovations
are negatively correlated with current stock returns and positively
correlated with expected future returns. Lacking any way to break
returns into components, Chen is unable to relate his findings to the
time-series hehavior of equity cash flows.

2.3 A beta decompasition for size portfolios

In Tables 3 and 4 we repeat the previous analysis for 10 size portfolios.
The first column of Table 3 shows the well-known fact that overall
market betas on size-sorted portfolios decline almost monotonically

' These results are sensitive to the way in which inflation is measured. Campbel] and Ammer (199%)
study not contemparaneous infation but news about long-cun future inflation, They fnd thae, if
anything, such news has a positive effect on the stock market.
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Table 3
Decomposition of market betas for size portfolios
B Bim B Bioim R
Decile 1 1.170 0467 —0.715 1.152 0.048
{0.079) (0.278) (0.285) (0.523} (1.412)
Decile 2 1.153 0.267 —0.898 0.962 0.050
€0.062) (0.239) (0.241) (0.475} {1.31%)
Decile 3 1.156 0.256 -0.912 1.037 0.054
(0.038) (0.217) 0.217) (0 406) (1.288)
Decile 4 1.124 0.198 -0.942 0.958 0.051
(0.045) (0.197) (0.192) (0.350) {1.206)
Decile 5 1.115 0.202 -0.925 0.987 0.052
(0.041) (0.187)} (0.184) {0.319) 1.185)
Decile 6 1.101 0.150 —0.963 0.892 0.050
(0.038} {0.179} (0.175} (0.346) {1.132)
Decile 7 1.097 0.169 —0.940 0.993 0.051
{0.027) (0.166) (0.162) 0.216) (1.096)
Decile 8 1.076 0.156 —0.932 0.892 0.044
(0.022) (0.147) (0.144) (0.213} (0.993)
Decile 9 1.025 0.094 —0.944 0.864 0.049
(0.014) (0.145) {0.140) (0.155}) (0.987)
Decile 10 0.956 0.201 —0.767 1.058 0.053
(0.013) 0.140) (0.135) (0127} (0.944)

#... is the retucn sensitivity to the market ceturn. 8, is the sensitivity of cash flow news to the
market ceturn. 3, , is the sensitivity of excess-returns news ro the market rerurn. 3,,, .., i5 the sensitiviey
of cash low news to the market's cash flow news. 8,,., which is the sensitivity of real interest race
news ta the market return, is equal to 0.012. The number in parentheses below R* gives the standard
deviation of conditional expected excess returns. Decile 1 is compased of small stocks from the
first decile of size-sorted portfolios, and decile 10 is composed of large stocks from the last decile
of size-sorted portfolios. We use the value-weighted NYSE index far the macket partfalia. The
sample covers the time period from 19521 to 1987:12.

with size. The second and third columns show that this pattern occurs
mainly because expected future cash lows on small stocks are more
sensitive to the market return. The betas for excess-returns news are
not strongly related to size. The fourth column of Table 3 shows that
the beta of cash flow news with market cash flow news generally
declines with size, but the decline is not monotonic. Finally, the fifth
column of Table 3 shows that small stocks typically have mare variable
expected excess returns, but this does not translate into expected
excess-rerurns betas that are larger in absolute value for small stocks.

The left-hand panel of Table 4 presents cash flow betas of size
portfolios with innovations in economic state variables. We find that
news ahout cash flows on small frms is generally more sensitive to
unexpected changes inreal interest rates and inflation. An unexpected
1 percent increase in the annualized real interest rate has a 0.33
percent positive cash flow effect on the smallest firm portfolio but
only a 0.15 percent positive cash flow effect on the next-to-largest
firm portfolio and a ¢.21 percent positive cash flow effect on the largest
portfolio. Similarly, an unexpected 1 percent increase in the annual
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Table 4
Decompaosition of observable factor betas for size portfolios
Cash flow components Excess return components
rrate b/ P, infn [PG frite e, infn PG
Decile 1 0.381 —0.074 —0.359 0.041 0.062 0.180 0.024 —0.001
0172y (0.067) (0.255)  (0.040) (0.171) (0.069)  (0.230)  (0.037)
Decile 2 0.314 —3.424 —{.258 —0.007 4.019 0.223 a.111 —0.007
(0.148)  €0.057) (0.214)  (0.032) (0.160) (0.059)  (0.213)  (0.032)
Decile 3 0301 —-0.023 —0.266 0.006 AR ) 0.226 0.088 0.004
(0.138)  (0.052)  (€0.197) (0.018) (0.153) {0.033} (0.201)  (0.028)
Decile 4 1.228 —{.010 ~0.196 —3.002 —3.074 0.233 0.169 —0.002
(0126 (0.047) (0171} (0.024) (0.144) (0.047) (0.178)  (0.027)
Decile 5 0.231 —3.011 —3.210 —-0.003 —0.042 4.228 0.134 0.000
(0.118) (0045}  (0.158)  (0.023) (0.136) (0.045)  (0.165)  (0.026)
Decile & 08.225 0.000 -0.181 0.005 —0.053 0234 0.156 8.001
(0.114)  {0.043)  (0.153)  (0.020) (0.136) (0.043) (0163}  (0.023)
Decile 7 0176 —0.006 —{.185 0.008 —0.091 0.230 1.138 0.008
(0.094)  (0.040) (0.125) (0.018) (0.123) (0.039}  (0.144)  (0.023)
Decile 8 0.166 —0.085 —0.164 0.014 —-0.111  0.227 0.163 0.010
(0088}  (0.035) (0119} (0.016) (0.115) (0.033) (0.139) (0,021}
Decile 9 0.151 0.007 —i3.149 0,006 —0.124 0.230 0.157 0.007
(0.081)  {0.034) (0103}  {0.014) (0.110) (0.034) (0130}  £0.021)
Decile 10 0.213 —0.023 -0.311 0.019 4.007 0.184 —0.073 0.013
(0.082)  (0033) (0.118)  (0.014) (0.097) (0.033) (0140}  (0.021)
B 0154 —0002 —0.126 —0.001

(0.021) (00077 (0.033)  (0.004)

The unit foc each variable is percentage paine per annum for rrate (real interest rate), basis paint
for /P, percentage point per annum for infn (infation), percentage point per annum for PG
(industrial production growth, seasanally adjusted). Decile 1 is composed of small stocks from
the fitst decile of size-sarted partfolios, and decile 10 is campased of large stocks from the last
decile of size-sorted portfolios. We use the value-weighted NYSE index for the market pactfolio.
The szample covers the time periad from 1952:1 to 1987:12.

inflation rate has a 0.36 percent negative cash flow effect on the small-
est portfolio but a 0.17 percent negative effect on the next-to-largest
portfolio and a 0.31 percent negative effect on the largest portfolio.
This finding complements the study by Chan and Chen (1991), which
examines differences in firms' structural characteristics that lead firms
of different sizes to react differently to economic news. Chan and
Chen find that firm size is highly correlated with firm characteristics,
such as entry type, financial ratios, leverage, and dividend behavior.
But Chan and Chen are nat able to examine directly the relationship
between a firm’s size and its cash flow sensitivity to economic vari-
ables,

Finally, the bottom row and right-hand panel of Table 4 give the
sensitivity of news about real interest rates and future expected excess
returns on size portfolios to economic variables. All the main results
we obtained for industry portfolios appear again here. The cash flow
effect of inflation outweighs the future real interest rate effect, and
both cash flow effects and future excess return effects play a role in
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accounting for the cross-sectional variation in the overall betas on
real interest rates and inflation.

2.4 Alternative measures of cash flow news

So far we have treated cash flow news as a residual component of the
stock return. If Equation (3} is an accurate approximation, and if the
VAR system fully describes the true process for expected returns, then
this residual calculation procedure should accurately measure cash
flow news, However, if the VAR process used is misspecified, then
the “residual cash flow news” measure may he a poor proxy for actual
cash flow news. To study this issue, we calculate an alternative “direct
cash flow news” measure for the value-weighted NYSE stock price
index.

The monthly dividend series is strongly seasonal, because most
companies in the value-weighted stock index pay quarterly dividends.,
Simple seasonal adjustment procedures, such as the use of seasonal
dummies, do not seem to remove the seasonality, s0 we use quarterly
data over the period 1952:Q1-1987:Q4. We first form residual cash
flow news by using the VAR procedure with quarterly values of the
state variables. We adjust the value of p for the change in the time
unit of the data. We then form direct cash flow news by regressing
quarterly log real dividend growth on the state variables and using
the VAR process for the state variables to form revisions in expecta-
tions of future dividends. Specifically, if ¢ is the vector of regression
coeficients of dividend growth on the state variables, and if the resid-
ual from this regression is u,, ., then direct cash flow news is

éa‘m = Mty + pcf(l - pH)MIs&Hl- (13)

Table 5 panel B shows the correlation berween the residual and
direct cash flow news measures as the monthly value of p varies
between 0.991 and 0.997. This correlation always lies between 0.92
and 0.935, and it increases with p. Panel A shows the residual and
direct cash flow hetas with the market return and the other factors
considered in this article. The residual and direct cash flow betas are
always clase to one another. The results in the table are based on a
one-lag VAR process. Results are generally similar for a two-lag VAR
pracess; however, the correlation herween the residual and direct
cash flow news measures drops from about 0.93 1o about 0.88. Resulis
are also fairly similar if we include dividend growth in the state vector
and recalculate both the residual and direct cash flow news measures.

Wwe conclude that the choice between the residual and direct mea-
sures of cash flow news is not critically important for our results. We
use the residual measure in the rest of the paper because it enables
us to avoid dealing with the seasonality in the dividend growth series.
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Table 5
A. Residual cash low beta {RCFB} vs. direct cash low beta {DCFB}
Cash Aow
p betas Marker crate D/e, tnfo [Py
0.991 RCFB 1.759 1.394 0114 —1.647 —0.330
DCFR 0.614 1.415 a.111 -1.512 —0.274
0.993 RCFB 0.750 1 400 4.114 —1.667 —{.341
LCFB 0623 1.462 0110 —1.587 —0.292
0.99% RCFB 0741 1.407 0.120 —1.690 —0.353
DCFR 0.631 1.514 0.108 —-1.672 —0.313
0.997 ECFB 0.730 1.416 0.121 —1.717 —0.366
DCFR 0.641 1.574 0.106 —1.770 —0.337
B. Correlation herween cesidual cash flow news and direcr cash flow news
I 0991 0.993 0.995 0.997
Cart. coefficient 0922 0.926 4930 0933

Baoth cash Aow bewas are caleulated based on a ane-lag VAR process for the stace variables. The
unit for each variahle is percentage point per quareer for che marker, percentage point per anoum
far rrate (real interest cate), basis point pec anpum for B/ P, peteentage point per annum for inf
{inflation}, percentage paint per annum for IPG (industrial peaduction growth, seasonally ad-
justed}. [n the caleulation, we use p® = p* instead of p to make adjustment for the use of quarterly
data. We use guarterfy data covering the time period from 1952:Q1 ta 1987:Q4.

3. Beta Determinants in Asset Pricing Models

Under certain conditions, asset pricing theory may impose that
expected excess asset returns are proportional to betas as we have
defined them. This will be true, for example, if expected excess returns
are proporticnal to full conditional betas and if the variances and
covariances of innovations are constant or changing in proportion to
one another so that conditional betas are constant and equal to our
betas.* Under these conditions, asset pricing theory can be used to
eliminate the expected excess-returns components from (6) and (8).

3.1 The CAPM

As a first example, consider the market beta decomposition given in
(6). Suppose that the CAPM holds for our definition of market beta.
Then expected excess returns in any future period are linear in beta:

Eei = ﬁz‘,mE.rem,r-hj-kl‘ (14)

Using Equations (4) and (14}, we can calculate the news about future
excess returns for asset i at time ¢ + 1:

* Camphell {1987}, Ferson (1993}, Ferson and Hacvey {1991}, Shanken {1990}, and athets cest far
constant conditional beras in muoltifaceor gsser pricing models. The hypothesis thae canditional
beras are constant is easy o reject in madels with a small number of factors, but it is much hacder
to reject when mare factors are allowed. Ferson and Harvey (1991) argue that for the portfolias
studied here, variation in betas is small relative o variation in factar risk prices.
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é,=(E — E) E ey
i=1

=(E,,, — E) E ijr+j[ﬁi,m8m,l‘+j+l]

=1
= ﬁ;’,méerm (15)

where &, is news about future excess returns on the market, Equation
(15) says that if the CAPM holds, news about future excess returns
on any stock equals that stock’s beta times news about future excess
returns on the market.

We can now use Equation (15) to rewrite (6) as

_Covi(é, — &, 2,) _ Cov({é,,, .}
Bim = T Var(a,) B Vare) (16)
Solving for 8, ,, in Equation (16), we have
_ Cov(éema ém) - Cov(éeﬁ — ér] ém)
Bum= [1 T Var(g,) ] Var(3,)
= (1 + ﬁem,m)“l(ﬁd.r,m - -Br,m)! (17)

where 8., is the market beta of news about future excess returns
on the market.

Equation (17) says that an asset's overall market beta is a linear
function of the market bera of news about future cash flows on the
asset. In Figure 1 and 2 chis linear function is shown as a solid line.
The intercept and slope in (17) depend on the market beta of news
about real interest rates, 8, ., and the market beta of news about future
excess market returns, 8.,, . Over the period 19521987 we estimate
8, . to be very close to zera at 0.01, while 8., ., is negative and quite
large in ahsolute value at about —0.8. These estimates are similar to
thase implied by the results of Campbell (1991). The small estimate
of 8, reflects the fact that the stock market is much more volatile
than real interest rates, so0 the market beta of real interest rate news
is close ta zera. The size of 8., .. reflects the fact that much of the
variation in stock returns is associated with changing expected future
stock returns, Holding individuals and real interest rates fixed, a higher
expected future return requires a lower stock price today, hence the
negative sign of 8,,, ..

The effect of 3,,, in (17) is common to all assets, reflecting the
common influence of real interest rate variation on all long-term
returns® To see the role of 8,, in determining individual assets’

‘ Recall that our application of the Campbell-Shiller linearizatian imposes the same p for all assets,
effectively assuming thac all 2ssets ate equally sensitive to a given change in the expected time
path of real interest rates.
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Figure 1

Overall marcket beta and cash Aow market beta for industrial portfolios

The harizonial 2xis shows the macket beta of an asset’s cash low news, 8., ... The vertical axis shows
the asset's averall markec beca, 8,,,. The solid staighe line is the relationship between the two
implied by the CAPM, Equation {17} inthe cexr: 8,,,= (1 + 8., )" (Borw — Brn)- The figure assumes
B = —0.832 2and 8., = 0012, based on estimates calculated for the period 1952-1987. The
scatterplor provides the empirical relacdionship beoween 8, and g, The dashed line is the regres-
sian line for the scacter points.

market betas, consider a stock whose cash flows have a positive market
beta 3, ., exactly equal to 8, .. When the market rises, good cash flow
news tends to increase the price of this stock, but higher real interest
rates tend to reduce the price of the stock. Overall, the stock has zero
covariance with the market.

The slope coeficient (1 + 8,,.,.7" in Equation (17) has a2 more
important influence on assets’ overall market betas. If 8,,.,., = —0.8,
then (1 + 8,,...)"' = 3, indicating that an asset’s overall market beta
is about five times the market beta of its cash flows. The reason is that
an increase in the market is associated with a decrease in expected
future excess returns on the market, and hence a decrease in expected
excess returns on any asset that has a positive beta with the market.
This decrease in expected future excess returns leads to a capital gain
on the asset today, increasing the asset's bera with the market.

All the beta components in (17) are betas with the overall market
return, but it is possible to break the market return itself into com-
ponents é,,, &, and &,,, representing news about future market cash
flows, real interest rates, and market excess returns. [This is the exer-
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Figure 2

Overall market beta and cash flow market beta for size porctfalios

The harizontzl 2xis shaws the market beta of an asset's cash flow news, A,, .. The vertical axis shows
the asset's overzll market betz, 8, .. The salid suaight line is the relationship between the two
implied by the CAPM, Equation (17} inthetext: 8, , = (1 + &, 17" (A, — A,...0. The figure assumes
Bonm = —0832 and 8., = 0.012, based an estimates caleulated for the period 1952-1987. The
seatterplat pravides the empirical relationship between 8,,., and 8,.,.. The dashed line is the regres-
sion line for the seatter pains.

cise undertaken in Campbell (1991) and Campbell and Ammer (1993) |
Then the covariances of individual asset cash flows and real interest
rates with the market can be broken into covariances with market
cash flow news, real interest rate news, and market excess return news.
An asset whose cash flows have a high market beta (2 high 8,,..) need
nat be an asset whose cash flows have a high covariance with market
cash flow news &,,. A high-beta asset could instead be an asset whose
cash flows covary negatively with real interest rate news &, or with
news about future market excess returns &,,,.

Equation (17) also illustrates the conditions under which overall
market betas 8, , equal cash flow market betas 8, ... This requires 8, ,,
= 0 (real interest rates uncorrelated with the market recurn) and 8,,, ..
= 0 (expected future excess market returns uncorrelated with the
market return). Sufficient, but not necessary, conditions are that real
interest rates and expected excess market returns are constant; in this
case we have the stronger result 8,,, = 8., 4., and betas are determined
by covariances of asset cash flow news with market cash flow news.

It is interesting to ask whether our empirical beta decomposition
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for industry and size portfolios conforms to the pattern predicted by
the CAPM with constant conditional betas. Figure 1 (for industry
portfolios) and Figure 2 (for size portfolios) show the theoretical
relation derived in Equation (17} as a solid line. The intercept and
slope are VAR estimates of 8,,, and (1 + 8,,,..)"", respectively. Qur
unrestricted estimates of 8., and 8, , for each portfolio are shown as
scatterpoints in the figure, and an unrestricted QLS regression through
these points is shown as a dashed line. It is apparent from Figures 1
and 2 that the CAPM does not fit these results. The CAPM predicts
that the scatterpoints should lie along a line with an intercept close
to zero and a slope of about 5. Instead, in both figures the points lie
along 2 line with an intercept close to 1 and 2 slope between 0.2 and
0.5. There is considerable variation in 8, but the §,,.. components
dampen this variation rather than amplifying it as required by the
CAPM. This result can also be seen directly in Tables 1 and 4, where
assets with large cash flow betas are not necessarily those with large
excess return betas (in absolute value). As one would expect from
this informal visual presentation, the restrictions imposed by the CAPM
on the econometric model are statistically rejected. We report tests
of the restrictions in Table 6.

3.2 Multifactor models

The preceding z2nalysis generalizes straightforwardly to a multifactor
asset pricing model. A K-factor model for returns with constant con-
ditional betas implies that the unexpected excess return on asset #
satisfies

K
éx,;+1 = 2 ﬁr,k.fk,r'fhl t Ui (18)
£=1

The unexpected excess return is written as the sum of K-factor inno-
vations f,,, times their factor loadings 8, plus an idiosyncratic shock
Yirpy

Given the factor structure (18), no-arbitrage or equilibrium argu-
ments can be used to derive the standard restriction on expected
returns:

4
Efei,f-f—l = 2 ﬁ:’,kkk,n (19)

k=1

where A,, is the conditional risk premium on the kth factor, known
at time ¢ and applying to time ¢ + 1. The news about future excess
return on asset { can now be rewritten as

K o
8= 2 ﬁ:’,k(ﬁt-Fl — E) E 20 YOy
m =

£=1
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Tahle 6
Robustness to specification {cash flow components of observable factor betas for the
market portfolio)

Specifications rrate bB/e, infn. PG

A. No asset pricing restriction,

£ =% VAR lag = 1, {1 unknown 0.202 —0.01% —0.262 0.014

(same as above, drop 87:10-87:12} 0.219 —0.017 —0.271 a.01s

£=35 VAR l2g = 1, 2 known 0.202 —0.015 —0.242 0014

L =135 VAR lag = 2, 2 known 0.302 ~0.016 —0.354 0.023

B. CAPM restiction
L =15 VAR lag = 1, & known 0.231 -0.035 —0.320 0.035
L =95 VAR lag = 2, % known 0.532 —0.049 —0.713 0.067
C. Unohservable factar model resuiction

L=35 K= 1,VAR lag = |, @ unknown 0.199 —0.010 —0.258 0.016

L=15 K=1,VAR lag = 1, 2 known a.202 ~0.015 ~0.262 0014

L=35 K=1,VAR |ag = 2 {] known 0.302 —0.015 —0.355 0.022

D. Observable Faceor maodel restriction
F=K=35 VaR lag = 1, & known 0.202 —~0.015 —{.263 0.015
L= K=15 VAR lag = 2 2 knowmn 0.300 —0.017 ~1.353 0.023
E. x *-statistics for various madel restriction

L =5, VAR lag = 1, @ known 8579  df =55 p= 005 (CAPM)

L =15, VAR lag = 2, ! known 133.48 df =110 p= 062 (CAPM)

L =15 K=1,VAR lag = 1, @ knawn 67.06 df = 48 p= 036 {uncbservable
facrar)

P=35 K=1,VaR [ag = 2, O kpnown 111.53 df = 108 b= 388 {unobservable
factor)

L= K=245 VAR lag = 1, & known 30.85 df = 35 5= 668 {unabservable
facrar)

L=K=35, VAR lag = 2, I known 61.94 df = 70 b= 742 (unobsecvable
factor)

L is the number af state vatiables in the economy. K is the number of systematic factors in the
factor model. @ is the variance-covariance matrix fot innavations to the economic state variables
2nd unexpected portfolio excess returns. The statistics in this tzble ate estimated based on excess
retiirns on the 12 industrial partfolios 2nd the 5 ecanomic state vaciables.

K
= 2 Biuihe = 078, (20)
=1
where #,, is news about future risk prices on the kth factor, and 8,
and #, 2re column vectors containing f3,, and #,,, 2 = 1,...,K, respec-
tively, Substituting (20) into (8), we find that

!63,;.» = ﬁdf,re -8 Cov{Bi, ﬁ)/VAf(ﬂ)‘ (21)
This implies that the vector 3, obeys
B,=U+ Ay (B — B, (22)

where A = Var(f)—1 Cov( [, 77}, and B,, and 8, are column vectors
containing 8, and 8,,, £ = 1,.. K respectively,

Equation (22) is the multifactor generalization of Equation (17).
[tis complicated by the fact that the risk price of one factor can covary:
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with other factors; this is what requires us to solve for the whole
vector of betas simultaneously. If we rule this out, imposing that
Cov(fh,, [ = 0 for &+ I then we get the simpler relation

B =[1 + Coviig, f)/Var(f)]™ (Bas — B.u)
= (1 + ﬁ)\b,k)_l(ﬁdi,k - Iﬂr,k)l (23)

which is directly analogous to (17).

3.3 Beta decomposition with multifactor restrictions
Multifactor models can be used in empirical work to reduce the
number of parameters that must be estimated. The general VAR meth-
odology described in Section 1.3 places very little structure on
expected asset returns. The expected return on each asset depends
on the same vector of state variables but in a2n unrestricted way. This
means that the number of parameters increases very rapidly with the
number of assets, which can create econometric dificulties. If we are
willing to apply the restriction (19) implied by 2 K-factor asset pricing
model, however, we can put extra structure on the problem. Equation
(19) says that expected excess returns on any asset are given by the
sum of K-factor loadings 8,, times K prices of factor risk A,. Under
our assumption that the information set at time ¢ is the vector x,, we
can write A, 2s

L
Ao = 2 Oz (24}
-1

Substituting Equation (24) into Equation (19), we find that the
coefficients a,0f the vector a,in Equation (9) are restricted as follows:

K
dy = 2 ﬁx’,bekl‘ (25}
A=l

Equation (25) is a latent-variable model with K latent variables, as
introduced to the asset pricing literature by Gibbons and Ferson
(1985) and Hansen and Hodrick (1983). Whenever there are more
assets than factors, the restrictions in (25) greatly reduce the number
of free parameters in the model. This is wue even when we treat the
factors and factor loadings as unobservable; if the factors are assumed
to be innovations in the economic state variables, then the 8, can be
estimated from the contemporaneous covariances of asset returns and
state variables, leaving only the 8,,to be estimated from the regression
coefficients for expected returns.

The decomposition of systematic risk into cash flow risk and dis-
count rate risk is quite robust to whether we impose asset pricing
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restrictions {25) and to the number of systematic factors in the econ-
omy. We support this ¢laim in Table 6, which presents point estimates
of the sensitivities of cash flow news on the market portfolio to mac-
roeconomic state variables, using four different estimation proce-
dures. Panel A imposes no asset pricing restrictions in estimating
Equations (9) and (10}. Panel B estimates the model imposing the
CAPM—that is, Equation (25) with the market return as a single
observable factor. Panel C imposes (25), assuming that there is a
single unobserved factor. Panel D imposes {25}, assuming that there
are five observable factors that are the five variables in the VAR system.
Panel E reports tests of the overidentifying restrictions implied by
these asset pricing models. The CAPM is rejected, but there is only
weak evidence against the other sets of restrictions.’

As one would expect from this, the market portfolic’s cash flow
betas in Table 6 are affected most strongly by imposing the CAPM
but are barely altered by imposing the other asset pricing models.
Results for other portfolios (not reported in the table) follow a similar
pattern; CAPM restrictions alter the results by forcing the points shown
in Figures 1 and 2 to lie along a line with a slope of 4 or 5, but other
restrictions have lictle effect. The main exception is that the pattern
of results across size portfolios becomes smoother when a single-
unobserved-factor model is imposed.

Table 6 also reports the sensitiviry of our results to two other changes
in specification. Dropping the last three months of our sample, to
avoid the volatile period following the stock market crash of October
1987, has little effect on the estimated market cash flow betas. The
beta decomposition appears to be somewhat more sensitive to the
choice of VAR lag length. When we increase the lag length to 2 in
Table 6, we estimate a slightly higher cash flow sensitivity to real
interest rates and inflacion, but otherwise we get results similar to the
single-lag VAR cases.

Although our point estimates are insensitive to specification, as
shown in Table G, we find that the standard errors of our estimates
are quite sensitive to different sets of restrictions and different VAR
lag lengths. This is to be expected, because as we relax restrictions
and increase lag length we greatly increase the number of parameters
to be estimated.

All these tests take the variance-covariance mateix of VAR innovations as knawn. We have also
experimented with using 2 larger number af iterations in the G MM estimation pracedure, As pointed
out by Ferson and Foerster (1991, this ¢zn imprave the Anite-sample properties of latent-vatiable
madel estimates, We find that aur results are quite robust to the number of iterations, presumably
because our sample size is large compared with the number of asset potrfolios we study. Ferson
and Foerster (1991) also suggest using 4 finite-sample carrection far standard errars in GMM madels.
In our application this correctian would increase reported standaed ecrors for industey portfolios
by 17 peceent and for size poctfolios by 13 percent.
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4. Conclusions

We have used a dynamic accounting framework to break unexpected
asset returns into components associated with changing expectations
of future cash flows, real interest rates, and expected future excess
returns. We have then calculated the betas of the individual com-
ponents with the aggregate market and with various economic state
variables. This approach has produced several intriguing results.

First, expected excess-returns betas with the aggregate market are
typically much larger in absolute value than cash flow beras with the
market. Variation in expected excess returns on individual portfolios
acts to increase the covariation of these portfolios with the overall
stock market.

Second, cash flow betas, future real interest rate betas, and expected
excess-rewurns betas often have offsetting effects on the overall betas
aof assets with economic state variables. When inflation increases or
the ex post real interest rate declines, the negative effects on stock
prices of reduced cash flow and increased expected excess returns
ourweigh the positive effect on stock prices of declining future real
interest rates. When industrial production increases, the negative effect
of increased expected excess returns largely offsets the positive effect
of increased expected cash flow.

Third, there is no strong cross-sectional correlation berween assets’
cash flow betas and their expected excess-returns betas, Cash flow
betas with the market, for example, vary inversely with firm size, but
expected excess-returns betas with the market do not vary strongly
with firm size. The CAPM predicts that assets whose cash flows covary
strongly with the market should also have expected excess returns
that covary strongly with the market, but we find no evidence of this
effect in the data.

Of course, some caveats should be kept in mind when interpreting
these results. Our approach depends on the use of 2 log-linear approx-
imation to the true present-value relation. It also depends on the
correct specification of the information set used by investors to fore-
cast future returns. We have treated cash flows as 2 residual, 2nd so
a misspecification of the information set could affect our estimates of
both cash flow betas and expected excess-returns betas. An appendix
ta this article available from the authors on request, shows that the
log-linear system used here has only a small approximation error that
should not affect our results in any important way.

In this article we have also made a methodologiczal contribution.
We have integrated several approaches that are often used separately
in empirical finance: estimation of a contemporaneous multifactor
model, analysis of the present-value relationship, and analysis of asset
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expected returns in relation to the dynamic behavior of economic
state variables. We believe that the best future research in asset pricing
will treat these as elements of a single system.

Qur approach can be extended in several ways. We have used only
aggregate variables to forecast returns on stock portfolios; it would
be interesting to see whether portfolio-specific forecasting variables
would affect the results. We have explored the restrictions imposed
by asset pricing models only in the most preliminary way, and there
is much more research that can be done in this area. It would also
be interesting to use the methods of this article to study time-varying
conditional betas. Finally, our approach can be applied to other types
of common factors, such as the nominal interest rate movements
studied by Campbell and Ammer (1993), and to other assets, such as
the national stock indexes studied by Ammer and Mei (1992).
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