Trading scenarios

- Trading as a dealer (TRN)
 - Strategy: post bids and asks, try to make money on the turn. *Maximize profits*

- Trading on information (F1, PD0)
 - Strategy: forecast price trend (possibly by reading the order flow). *Maximize profits*

- Hedging (H1, H3)
 - Goal is risk reduction. *Minimize tracking error*
Hedging: risk reduction

- We have some risk exposure that can’t be directly mitigated (reduced).
- Example: A bank portfolio of loans might be exposed to risk from unexpected interest rate changes.
 - The bank can’t simply sell the loans because
 - The loans are earning returns that the bank can’t get elsewhere.
 - There might be no market for the loans.

- Example: An airline is exposed to risk arising from changes in the price of fuel.
 - It might enter into long-term fixed-price contracts, but if the airline’s projected fuel needs change, it will be difficult to modify the contracts.
- Example: A pension fund with a large portfolio of stocks has a negative market outlook in the short run (weeks or months).
 - Selling the stocks and repurchasing them will lead to substantial trading costs.
We won’t try to eliminate *all* risks.

- Hedging is expensive.
 - Most hedges will incur trading costs.
- The securities that we need may not exist.
- There are some risk exposures that we (or our investors) might want us to keep.
 - A bond fund with expertise in credit scoring might want to hedge interest rate risk, but not credit risk.
 - Investors in gold mining stocks usually want some exposure to the price of gold. They don’t want the firm to eliminate this exposure.
- We want to be thoughtful and selective about the risks we hedge and the risks we keep.

The basic hedging principle

- Reduce risk by establishing a position in a security that is negatively correlated with the risk exposure.
- Negative correlation: the *value of the hedge* moves against or opposite to the risk exposure.
 - The ideal hedging security is cheap to buy, easy to trade, and very highly correlated with the risk exposure.
 - If we can go long or short the hedging security, it doesn’t matter of the correlation is positive or negative.
Static hedging

- When we buy/sell the hedging security, we need to trade quickly.
 - Until the hedging position is established we have risk.
 - But if we trade too quickly we'll incur high trading costs.
- The trade-off is risk vs. cost
- If the hedge just needs to be set up initially, and doesn’t have to be modified, it is a static hedge.
 - The hedging in the first RIT case is static.

Dynamic hedging

- In some situations the hedge position must be adjusted after the initial set-up. This is a dynamic hedge.
- The need for dynamic hedging typically arises in
 - Stock portfolios that have put and call options.
 - Bond portfolios that try to match the duration of some liability.
- The second RIT case involves a dynamic hedge.
Sample situation 1: Removing the market return in CAT

- CAT is the ticker symbol for Caterpillar (a manufacturer of heavy equipment)
- Portfolio manager Beth has $10 Million to invest.
- If she thinks that Caterpillar is undervalued, she simply buys CAT.
- Suppose that Beth thinks that Caterpillar is undervalued relative to the market.
 - She’s analyzed the heavy equipment industry, but has no opinion on interest rates, commodity prices, consumer spending or any of the many other things that drive the market.
 - She wants to invest in the difference between the return on CAT and the return on the market.

Betting on the return difference, $r_{CAT} - r_M$

- If the return on the market is $r_M = 5\%$ and $r_{CAT} = 7\%$, she wants a return of 2%.
 - If $r_M = -11\%$ and $r_{CAT} = -8\%$, she wants a return of 3%
- She wants to be long CAT and short the market.
- She’ll use the Standard and Poors Composite Index to approximate “the market”.
- To mirror the market “M,” there are two candidate hedge securities.
 - She can go long or short the SPDR (ticker symbol “SPY”)
 - She can go long or short the S&P Composite E-mini futures contract.
The S&P composite index is a weighted average of the prices of 500 stocks. It is computed every fifteen seconds.

- Many market data systems use “SPX” to denote the index.
 - But since it is not a traded security “SPX” is not a real ticker symbol.
- As of November, 2014, \(SPX \approx 2,000 \).

Ticker symbol SPY refers to the exchange-traded-fund (ETF) based on the index.

- It actually is traded. SPY is a real ticker symbol.
- It is constructed to have a value of one-tenth the index.
 - As of November, 2014 its price is \(SPY \approx 200 \).
- The SPY tracks the SPX closely, but not perfectly.
 - Discrepancies arise due to dividends, management fees, and so on.

The E-mini S&P futures contract

- Ticker symbols for futures contracts have a two-character product code (“SP”) followed by a month/year code that denotes the maturity of the contract.
 - We’ll use “SP” to denote the nearest maturity.
- The SP price quotes are reported in index points.
- The size of the contract is \(50 \times SPX \).
- The contract is cash settled.
 - Suppose I go long the contract today (time 0) at a price of \(SP_0 = 2,000 \).
 - Suppose at maturity (time \(T \)) the index is at \(SPX_T = 2,100 \).
 - I receive (from the short side) \((SPX_T - SP_0) \times 50 = (2,100 - 2,000) \times 50 = 5,000 \).
 - Note: this discussion is somewhat simplified. It ignores margin and daily resettlement.
Method I: Buying CAT and shorting the SPY

- Suppose that CAT is about $100 per share, and that the \(SPX \approx 2,000 \)
- Buy $10,000,000/$100 = 100,000 sh of CAT
- The SPY represents one-tenth of the S&P index. \(SPY \approx \$200 \)
 - Beth goes short $10,000,000/$200=50,000 sh of SPY.
 - She borrows 50,000 sh of SPY and sells them.
- She’s long 100,000 sh of CAT and short 50,000 sh of SPY

Suppose that \(r_{CAT} = 7\% \) and \(r_M = 5\% \)

- CAT stock goes from $100 to $107.
 - Beth’s 100,000 shares are now worth $10,700,000.
- The SPY is initially at $200.
 - A 5% return corresponds to a price of $210.
 - The value of Beth’s short position is 50,000 \(\times \$210 = \$10,500,000 \).
- The net value of Beth’s overall position (CAT + SPY) has gone up by $200,000
- This is a 2% return on the $10 Million initial investment.
Suppose that $r_{CAT} = -8\%$ and $r_M = -11\%$

- CAT stock goes from 100 to 92.
 - Beth’s 100,000 shares are now worth $9,200,000$.
- The SPY is initially at 200.
 - $r_{SPY} = -11\%$ return corresponds to a price of 178.
 - The value of Beth’s short position is $50,000 \times 178 = 8,900,000$.
- The net value of the overall position (CAT + SPY) has gone up by $300,000$.
- This is a 3\% return on the 10 Million initial investment.

Problem: suppose that $r_{CAT} = -10\%$ and $r_M = -6\%$. Work out the return on Beth’s 10 Million investment.

- Answer in online copy of handout.
- The price of CAT goes from 100 to 90.
 - Beth’s shares are worth $9,000,000$.
- The SPY goes from 200 to 188.
- The value of Beth’s short position is $50,000 \times 188 = 9,400,000$.
- The net change is $-400,000$, a -4% return.
Method II: Buying CAT and shorting the futures contract

- As in method I, Beth buys 100,000 sh of CAT
- As of November, 2014 (time “0”), the level of the S&P index is about $SPX_0 = 2,000$.
- An E-Mini S&P index futures contract has a notional value of $50 \times SPX = 50 \times 2,000 = 100,000/\text{contract}$.
- She goes short $\frac{10,000,000}{100,000} = 100 \text{ contracts}$ at 2,000

Suppose that $r_{CAT} = 7\%$ and $r_M = 5\%$

- CAT stock goes from 100 to 107.
 - Beth’s 100,000 shares are now worth $10,700,000$.
- “$r_M = 5\%$”: The SPX goes from 2,000 to 2,100
 - To settle her 100 short contracts, Beth pays $(2,100 - 2,000) \times 50 \times 100 = 500,000$
- The net gain is $200,000$ (a 2% return on the $10 \text{ Million initial investment}$).
Suppose that $r_{CAT} = -8\%$ and $r_M = -11\%$

- CAT stock goes from 100 to 92.
 - Beth’s 100,000 shares are now worth $9,200,000.
- “$r_M = -11\%$”: The SPX goes from 2,000 to 1,780
 - To settle her 100 short contracts, Beth pays
 \[(1,780 - 2,000) \times 50 \times 100 = -1,100,000\]
 - Beth receives $1,100,000
- Her positions are now worth $10,300,000: (a 3\% return on the 10 Million initial investment).

Problem: suppose that $r_{CAT} = -10\%$ and $r_M = -6\%$. Work through the numbers for method II. (How much to settle the futures contracts? What is the net percentage return?)

- Answer in online copy of handout
- Beth’s shares are worth $9,000,000
- “$r_M = -6\%$”: The SPX goes from 2,000 to 1,880
 - To settle her 100 short contracts, Beth pays
 \[(1,880 - 2,000) \times 50 \times 100 = -600,000\]
 - Beth receives $600,000
- Her net position is now worth $9,600,000.
- This is a loss of $400,000, a -4% return.
Situation 2: Removing the market risk from CAT

- Beth owns $10 Million worth of CAT
- She likes CAT, but would like to eliminate the market risk in CAT.
 - Market risk: randomness in CAT’s return that is driven by the market.
- We need a model of the joint randomness in CAT and the market.
 - We’ll use a simple linear regression.
 - Regress the returns on CAT vs the returns on M.

\[
\begin{align*}
\hat{r}_{CAT,t} &= \alpha_{CAT} + \beta_{CAT} \times \hat{r}_{SPY,t} + \epsilon_{CAT,t} \\
\end{align*}
\]

- Simple linear regression in Excel
 - Use in-cell formulas, SLOPE and INTERCEPT
 - Use array formula, LINEST. Can also be used for multiple regression.
 - Using Excel’s charting menus: plot data on an XY scatterplot; add an estimated trend line; display the equation of the trend line.
 - Use Excel’s data analysis menu to run the regression and display the output. Can also be used for multiple regression.
 - This method computes more diagnostic statistics.
 - But the results do not automatically update if the data change. You need to rerun the regression.
Approach

- Download prices for CAT stock and the SPY (or the S&P index)
- We’ll use month-end prices from 2009-2013.
- Construct monthly returns for CAT and the SPY.
- Plot them and find the best fit linear regression line.
 - A linear regression takes two variables “x and y” and relates them as a straight line plus an error:
 - For data point i, $y_i = \alpha + \beta \times x_i + e_i$
- The data and details are in workbook H1.xlsx, worksheet CATSPY, posted to the web.
- You’ll be doing similar calculations for the stocks in the RIT hedging case.

Going from prices to returns

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year</td>
<td>Date</td>
<td>Price</td>
<td>Price</td>
<td>Return</td>
<td>Return</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2009</td>
<td>20090130</td>
<td>$30.85</td>
<td>$82.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2009</td>
<td>20090227</td>
<td>$24.61</td>
<td>$73.93</td>
<td>-0.2023</td>
<td>-0.1074</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2009</td>
<td>20090331</td>
<td>$27.96</td>
<td>$79.52</td>
<td>0.1361</td>
<td>0.0756</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>20090430</td>
<td>$35.58</td>
<td>$87.42</td>
<td>0.2725</td>
<td>0.0993</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2009</td>
<td>20090529</td>
<td>$35.46</td>
<td>$92.53</td>
<td>-0.0034</td>
<td>0.0585</td>
<td></td>
</tr>
</tbody>
</table>

The formula used to calculate returns is $\frac{C4}{C3} - 1$.

Copyright 2014, Joel Hasbrouck, All rights reserved
Method 1: Use the SLOPE and INTERCEPT functions

\[\beta_{CAT} \]

Beta and intercept from SLOPE and INTERCEPT functions:

\[1.8589 = \text{SLOPE}(F4:F62, G4:G62) \]

\[-0.0037 = \text{INTERCEPT}(F4:F62, G4:G62) \]

Beta with zero intercept

\[1.8336 = \frac{\text{SUMPRODUCT}(F4:F62, G4:G62)}{\text{SUMPRODUCT}(G4:G62, G4:G62)} \]

Method 2: Make a scatterplot with a trendline

\[y = 1.8589x - 0.0037 \]

\[R^2 = 0.6147 \]
Method 3: Use the LINEST array function

\[
\beta_{\text{cat}} \quad \beta_{\text{cat}}
\]

\[
\begin{array}{c|cc}
 & \text{F4:F62} & \text{G4:G62} \\hline
1.8589 & -0.0037 & =\text{LINEST(F4:F62,G4:G62,TRUE,TRUE)} \\
0.1949 & 0.0090 & \\
0.6147 & 0.0654 & \leftarrow \text{Std. Errors.}
\end{array}
\]

\[
\begin{array}{c|c}
\text{R}^2 & 0.1949 \\
\text{Mean Sq. Error} & 0.6147 \\
\text{Observations} & 90.9345 \\
\text{Residual} & 0.3886 \\
\text{Total} & 0.2436
\end{array}
\]

Method 4: Use the DATA > Analysis > Regression menu

SUMMARY OUTPUT

<table>
<thead>
<tr>
<th>Regression Statistics</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.7840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Square</td>
<td>0.6147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.6079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.0654</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>0.3886</td>
<td>0.3886</td>
<td>90.9345</td>
<td>2.08E-13</td>
</tr>
<tr>
<td>Residual</td>
<td>57</td>
<td>0.2436</td>
<td>0.0043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
<th>Lower 95.0</th>
<th>Upper 95.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.0037</td>
<td>-0.4077</td>
<td>0.6850</td>
<td>-0.0216</td>
<td>0.0143</td>
<td>-0.0216</td>
<td>0.0143</td>
</tr>
<tr>
<td>X Variable 1</td>
<td>1.8589</td>
<td>9.5360</td>
<td>0.0000</td>
<td>1.4685</td>
<td>2.2492</td>
<td>1.4685</td>
<td>2.2492</td>
</tr>
</tbody>
</table>

If you don’t see “Data Analysis” on the DATA menu, you may need to enable the Analysis-ToolPak add-in. You can reach this menu from FILE ➔ Options ➔ Add-Ins.
Interpretation of one observation

- \(r_{\text{CAT},t} = \alpha_{\text{CAT}} + \beta_{\text{CAT}} \times r_{\text{SPY},t} + e_{\text{SPY},t} \)
- In June, 2009, \(r_{\text{CAT},t} = 0.334 \) (33.4%) and \(r_{\text{SPY},t} = 0.075 \) (7.5%)
- Statistical interpretation:
 - \(0.334 = -0.004 + 1.859 \times 0.075 + 0.199 \)
 - Predicted value of \(r_{\text{CAT},t} \)
 - Regression error

- Economic interpretation:
 - “In June, 2009, factors in the broader market caused CAT to go up by 13.5%. An additional return of 19.9% came from factors unrelated to the market.”
 - These unrelated factors would be due to industry- and company-specific effects.

Decomposition of CAT’s risk

- \(r_{\text{CAT},t} = \alpha_{\text{CAT}} + \beta_{\text{CAT}} \times r_{\text{SPY},t} + e_{\text{CAT},t} \)
- \(\text{Var}(r_{\text{CAT},t}) = \sigma_{\text{CAT}}^2 = \beta_{\text{CAT}}^2 \times \sigma_{\text{SPY}}^2 + \sigma_{e,\text{CAT}}^2 \)
- Note: \(\alpha_{\text{CAT}} \) is constant and doesn’t contribute any risk.
- Interpretation:
 - \(\sigma_{\text{CAT}}^2 = \frac{\beta_{\text{CAT}}^2 \times \sigma_{\text{SPY}}^2}{\text{Total risk of CAT}} + \frac{\sigma_{e,\text{CAT}}^2}{\text{CAT’s firm-specific risk}} \)}

Total risk of CAT
CAT’s market risk
CAT’s firm-specific risk
Implications for hedging

- \(r_{\text{CAT},t} = \alpha_{\text{CAT}} + \beta_{\text{CAT}} \times r_{\text{SPY},t} + e_{\text{CAT},t} \)
- \(\beta_{\text{CAT}} \approx 1.86 \) is a multiplier
 - If the market is up 1%, then all else equal, we expect CAT to be up 1.86%
- If we are long $1 in CAT, we should be short \(\beta_{\text{CAT}} \times $1 \approx $1.86 \) of the SPY.
- To eliminate the market risk in $10 Million worth of CAT we can
 - Short $18.6 Million worth of SPY
 - \(\frac{$18.6 \text{Million}}{\$200} \approx 93,000 \) shares of SPY
 - Or, short $18.6 Million notional of the index futures contract
 - \(\frac{$18.6 \text{Million}}{2,000 \times \$50} \approx 186 \) Contracts

Example

- If \(r_{\text{SPY}} = 0.01(= 1\%) \), then we expect (all else equal, ignoring \(\alpha_{\text{CAT}} \)) that \(r_{\text{CAT}} = 0.0186 \).
- Our $10 Million position in CAT goes up by $186,000.
- A 1% gain on SPY corresponds to the S&P going from 2,000 to 2,020.
 - We settle our 186 futures contracts by paying
 \(186 \times (2,020 - 2,000) \times \$50 = $186,000 \)
 - This is a total offset.
The RIT H1 hedging case

- We have a $100 Million portfolio and we need to hedge the market risk with a stock index futures contract for one month.
 - We need to design and implement the hedge.
 - Figure out how many contracts to short, and trade to reach that position.
- The market index is the RTX. The current value of the RTX is 1,050.
- The RTX futures contract has a notional value of $RTX \times $250. At present, this is $1,050 \times $250 = $262,500.
- The contract is cash settled. At maturity the long side receives $(RTX_{maturity} - 1,050) \times 250.
 - Example. If the RTX in one month is 1,045, then the long side receives $(1,045 - 1,050) \times $250 = -$1,250
 - Since the RTX has declined, the long side pays the short side $1,250.

Materials (workbook H1.xlsx, posted to web)

- Worksheet CATSPY (already used earlier)
- Worksheet Portfolio contains the composition of the portfolio.
- Worksheet Securities has the price history for the portfolio’s ten securities.
Worksheet Portfolio

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stock</td>
<td>Price</td>
<td>Shares held</td>
<td>Value</td>
<td>Weight</td>
</tr>
<tr>
<td>2</td>
<td>GD</td>
<td>$50.00</td>
<td>176,000</td>
<td>$8,800,000</td>
<td>0.088</td>
</tr>
<tr>
<td>3</td>
<td>POP</td>
<td>$80.00</td>
<td>156,250</td>
<td>$12,500,000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RMS</td>
<td>$25.00</td>
<td>580,000</td>
<td>$14,500,000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BBL</td>
<td>$16.00</td>
<td>281,250</td>
<td>$4,500,000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TC</td>
<td>$84.00</td>
<td>100,000</td>
<td>$8,400,000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GEB</td>
<td>$52.00</td>
<td>200,000</td>
<td>$10,400,000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PKR</td>
<td>$154.00</td>
<td>100,000</td>
<td>$15,400,000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TTW</td>
<td>$62.00</td>
<td>200,000</td>
<td>$12,400,000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NWL</td>
<td>$8.00</td>
<td>1,112,500</td>
<td>$8,900,000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GCS</td>
<td>$21.00</td>
<td>200,000</td>
<td>$4,200,000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Total</td>
<td></td>
<td></td>
<td>$100,000,000</td>
<td></td>
</tr>
</tbody>
</table>

Worksheet Securities

A	B	C	D	E	F	G	H	I	J	K	L	M	
	Rotman In	Rotman In	GD Stock	POP Stock	RMS Stock	BBL Stock	TC Stock	GEB Stock	PKR Stock	TTW Stock	NWL Stock	GGS Stock	
2	Tick	RTX	RTF	GD	POP	RMS	BBL	TC	GEB	PKR	TTW	NWL	GGS
3	1,050.00	1,050.00	$ 50.00	$ 80.00	$ 25.00	$ 16.00	$ 84.00	$ 52.00	$ 154.00	$ 62.00	$ 8.00	$ 21.00	
4	1,051.13	1,051.13	$ 49.99	$ 79.86	$ 24.95	$ 16.01	$ 84.12	$ 51.54	$ 153.15	$ 61.92	$ 8.07	$ 21.03	
5	1,051.78	1,051.78	$ 50.07	$ 79.57	$ 25.09	$ 15.98	$ 83.65	$ 51.60	$ 153.70	$ 61.97	$ 8.06	$ 20.93	
6	1,049.51	1,049.51	$ 50.12	$ 79.73	$ 24.97	$ 15.80	$ 83.62	$ 51.47	$ 153.54	$ 61.81	$ 8.00	$ 20.81	
7	1,053.16	1,053.16	$ 50.23	$ 80.20	$ 25.02	$ 15.89	$ 83.47	$ 51.56	$ 153.99	$ 62.07	$ 8.06	$ 20.92	
8	1,052.72	1,052.72	$ 50.27	$ 79.91	$ 24.98	$ 15.82	$ 83.45	$ 51.50	$ 154.98	$ 62.01	$ 8.10	$ 20.86	
9	1,052.55	1,052.55	$ 50.14	$ 79.84	$ 24.96	$ 15.82	$ 83.47	$ 52.04	$ 154.99	$ 62.15	$ 8.07	$ 20.81	
10	1,047.85	1,047.85	$ 49.72	$ 79.38	$ 24.85	$ 15.70	$ 83.48	$ 51.82	$ 153.15	$ 61.44	$ 8.04	$ 20.76	
11	1,050.04	1,050.04	$ 49.72	$ 79.45	$ 24.92	$ 15.75	$ 83.65	$ 51.81	$ 153.57	$ 61.81	$ 8.03	$ 20.75	
12	1,044.84	1,044.84	$ 49.44	$ 78.62	$ 24.99	$ 15.70	$ 83.31	$ 51.39	$ 151.82	$ 61.27	$ 7.96	$ 20.72	
13	1,044.12	1,044.12	$ 49.49	$ 78.65	$ 24.98	$ 15.67	$ 82.82	$ 51.43	$ 151.55	$ 61.14	$ 7.93	$ 20.68	
Notes

- RTX is the index; RTF is the futures price.
 - In this case, they are the same; you can use either to represent “the market”

Two ways to estimate the portfolio beta, β_P

- Compute the portfolio weights $w_1, w_2, ..., w_{10}$.
- Using the returns on the individual stocks, estimate the individual beta’s: $\beta_1, \beta_2, ..., \beta_{10}$.
- Compute the portfolio beta as the weighted average of the individual betas:
 $$\beta_P = w_1 \beta_1 + w_2 \beta_2 + \cdots + w_{10} \beta_{10}$$

- Compute the portfolio weights $w_1, w_2, ..., w_{10}$.
- For each month t, compute the portfolio return as the wtd avg
 $$r_{Pt} = w_1 r_{1t} + w_2 r_{2t} + \cdots + w_{10} r_{10t}$$
- Using the portfolio returns, estimate β_P
Assignment

- Design the hedge.
 - Estimate the portfolio beta.
 - Figure out how many contracts to short.
- Implement the hedge
 - H1 is running on the server. In any given round, you need to actually establish the short position.
 - Play two rounds of H1.
 - Hints: Try to establish the hedge quickly. (This reduces your risk exposure.)
 - The important thing here is not overall profits: it is selling the correct number of futures contracts.
- Answer questions 1-3. (This submission will be online via NYU classes; you'll receive an email when the submission page is available.)
- Due date: Monday, April 20, 11:59 PM