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Price Discovery in High Resolution 

Abstract 

US equity market data are currently timestamped to nanosecond precision.  This permits models of 

price dynamics at resolutions sufficient to capture the reactions of the fastest agents. Direct 

estimation of multivariate time series models at sub-millisecond frequencies nevertheless poses 

substantial challenges. To facilitate such analyses, this paper applies long distributed lag models, 

computations that take advantage of the inherent sparsity of price transitions, and bridged 

modeling. At resolutions ranging from one second down to ten microseconds, I estimate 

representative models for two stocks (IBM and NVDA) bearing on three topics of current interest. 

The first analysis examines the extent to which the conventional source of market data (the 

consolidated tape) accurately reflects the prices observed by agents who subscribe (at additional 

cost) to direct exchange feeds.  At a one-second resolution, the information share of the direct feeds 

is indistinguishable from that of the consolidated tape. At resolutions of 100 and 10 microseconds, 

however, the direct feeds are totally dominant, and the consolidated share approaches zero. The 

second analysis examines the quotes from the primary listing exchange vs. the non-listing 

exchanges. Here, too, information shares that are essentially indeterminate at one-second 

resolution become much more distinct at higher resolutions. Although listing exchanges execute 

about one fifth of the trading volume, their information shares are slightly above one-half. The third 

analysis examines quotes, lit trades, and dark trades. At a one-second resolution, dark trades 

appear to have a small, but discernible, information contribution. This vanishes at higher 

resolutions. Quotes and lit trades essentially account for all price discovery, with information 

shares of roughly 65% and 35%, respectively. 

 

KEY WORDS: High-resolution, high frequency trading, vector autoregression (VAR), vector  error 

correction models (VECM), polynomial distributed lags,  sparsity.
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I. Introduction 

Many important questions in empirical market microstructure turn on the joint dynamics of bids, 

asks, and last sale prices. These dynamics are central to identifying innovations in market data, and 

distinguishing permanent informational effects from transient behaviors. They bear directly on 

market structures and practices that facilitate (or impede) the incorporation of information into 

security prices, that is, the process of price discovery. This paper discusses and compares various 

approaches to modeling these dynamics at natural timescales that range from those of human 

decision processes down to the reaction times of algorithms. Modern markets convene agents 

active across the full range of this spectrum. 

 Although the present paper only considers resolutions down to ten microseconds, the 

NYSE’s TAQ data are currently timestamped to nanosecond precision. Thus, while microstructure 

data are sometimes described as high frequency, the more striking feature is their high resolution.1 

The enhanced resolution is important because it allows us to identify information sets and feasible 

strategies that are blurred at coarser timestamps. The identification may derive from physical 

limits on transmission speeds or deliberate delays (“speed bumps”) introduced as a feature of 

market design. 

 The paper’s approach draws on several econometric themes. The specifications are 

standard vector autoregression and error correction models (VARs and VECMs), with the usual 

transformations to obtain random-walk variances and information shares.  In microstructure 

applications, these are usually specified in event time or relatively long (one second or more) 

intervals of natural time.  

 To achieve high resolution in a natural time model, the paper follows the heterogeneous 

autoregressive (HAR) approach used for realized volatility forecasting by Corsi (2009).  Essentially, 

within each timescale, model coefficients are constrained to a small number of values. Corsi’s 

specifications involved daily, weekly and monthly terms, implying a factor of twenty or so between 

                                                             
1 The NYSE’s TAQ Consolidated Quote file for October 1, 1996 contained about 684 thousand 
records; the file for October 3, 2016, about 670 million records, that is, a factor increase of about 
one thousand. The timestamp precision over the same period, however, went from seconds to 
nanoseconds, a factor of one billion. 
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the shortest and longest components. The components in the present models range between ten 

seconds and ten microseconds (a factor of one million).  Computation relies heavily on sparsity: the 

number of price updates is typically many orders of magnitude smaller than the number of 

intervals in the sample. The analysis also investigates computational efficiency achieved in bridging, 

whereby forecasts from high-resolution models are aggregated and used as inputs for longer-term 

forecasting based on lower-resolution models (discussed in Bańbura, Giannone, Modugno and 

Reichlin (2013)). 

 The full range of specifications are only estimated for one trading day (October 3, 2016) for 

one NYSE-listed stock (IBM) and one NASDAQ-listed stock (NVIDIA, ticker symbol NVDA). To 

examine the role of resolution, each analysis is conducted at a range of observation interval widths: 

from a low-resolution analysis conducted with one-second intervals down to a high-resolution 

analysis (at ten-microsecond intervals). I also augment the natural-time specifications with 

corresponding event-time models. The ten-microsecond and event-time specifications are also 

estimated over a longer 30-day sample, to construct means and standard errors. 

 The first analysis examines national best bids and offers (NBBOs) constructed from the 

consolidated tape (historically, the definitive record of market events), versus the NBBOs known to 

the exchanges’ direct subscribers. At a one-second resolution, the alternatives appear to be 

informationally equivalent, but at the higher resolutions, the dominance of the direct subscribers’ 

information sets becomes total. The second analysis examines the informational contributions of 

the bids and offers from the listing exchange versus those of all other exchanges. At low resolutions, 

the two sets of prices are indistinguishable. At the higher resolutions, the listing exchange 

contributes slightly more information than all other exchanges, combined. This information 

dominance is perhaps surprising given that the listing exchanges currently account for around one-

fifth of executed trading volume. The third analysis examines quotes, lit trades, and dark trades. At 

a one-second resolution, dark trades appear to have a small, but discernible, information 

contribution. This vanishes at higher resolutions. Quotes and lit trades account for virtually all price 

discovery, with information shares of roughly 65% and 35%, respectively. The event-time and high-

resolution natural-time results generally agree, but the upper and lower bounds of the event-time 

information shares are markedly higher. 
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 The paper is organized as follows.  Section II presents the model, which is set in natural 

time. Section III contrasts natural- and event-time approaches to microstructure modeling. Section 

IV describes the data. The paper then turns to the applications: the analysis of reporting delays 

(Section V); cross-exchange contributions to price discovery (Section VI); and the relative 

contributions of quotes and lit and dark trades (Section VII). Section VIII discusses computations 

based on bridged models. Section IX concludes the paper and indicates further directions. 

II. Methodology 

A. Representation 

Hasbrouck (1995) specializes to microstructure settings the cointegration model of Engle and 

Granger (1987). The object of interest is a vector time series of prices 𝑝𝑡 = [𝑝1𝑡 ⋯ 𝑝𝑛𝑡]′ that is 

assumed to have covariance stationary first differences. The prices are bids, offers, last-sale prices, 

and so forth, possibly from different markets, but all pertaining to the same security. For this 

reason, they are cointegrated, possessing one common trend. There are 𝑛 − 1 cointegrating vectors, 

which may be specified without loss of generality as 𝑝1𝑡 − 𝑝2𝑡, 𝑝1𝑡 − 𝑝3𝑡 , … , 𝑝1𝑡 − 𝑝𝑛𝑡 . The 

cointegrating vectors are zero-mean.  The dynamics are represented by vector error correction 

model (VECM):  

Δ𝑝𝑡 = 𝛾𝐵𝑝𝑡−1 + 𝜙1Δ𝑝𝑡−1 + 𝜙2Δ𝑝𝑡−2 + ⋯ + 𝜙𝐾Δ𝑝𝑡−𝐾 + 𝜖𝑡  

where 𝐵 = [
1
⋮ −𝐼𝑛−1

1

] , 𝐸𝜖𝑡 = 0 𝑎𝑛𝑑 𝐸𝜖𝑡𝜖𝑠
′ = Ω 𝑓𝑜𝑟 𝑡 = 𝑠 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(1) 

The first term on the right-hand side is the error correction term. 𝐵 defines the (prespecified) 

cointegrating vectors and 𝛾 is the 𝑛 × (𝑛 − 1) matrix of adjustment coefficients. The second term is 

the usual autoregressive portion of the model. For brevity of notation, the autoregressive part may 

be written as a polynomial: 𝜙(𝐿)𝑝𝑡 = [[𝜙1𝐿 + 𝜙2𝐿2] + ⋯ + 𝜙𝐾𝐿𝐾]𝑝𝑡, where L is lag operator, 𝐿𝑖𝑝𝑡 =

𝑝𝑡−𝑖. The VECM is assumed to be invertible, possessing a vector moving average (VMA) 

representation 

Δ𝑝𝑡 = 𝜃(𝐿)𝜖𝑡, (2) 
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The VMA representation gives the impulse response function (IRF) subsequent to an arbitrary 

initial shock. In this application, the IRFs are used to depict the response of all prices to a shock in 

one of them. The VMA can be computed iteratively from the VECM. Under the assumption of 

covariance stationarity, the existence of VMA and VECM representations follow from the Wold 

theorem.2  

 Although the framework is conventional, the present applications exhibit some unusual 

features. The model is specified in natural time, and the intervals indexed by t are brief, down to 

1 × 10−5 seconds (ten microseconds).  The series of first differences, Δ𝑝𝑡, is very sparse. Bids, offers 

and last-sale prices persist in time, but at microsecond timescales they change relatively 

infrequently. Essentially, at these timescales all price transitions are jumps. Bids and offers are 

confined to a grid determined by the market’s tick size, but the grid of transaction prices is much 

finer. The order of the VECMs is large, up to 𝐾 = 1 × 106. Importantly, though, none of these 

features is inherently incompatible with covariance stationarity. Furthermore, the assumed 

covariance stationarity is unconditional, and so does not rule out the possibilities of conditional 

refinements associated with time-variation in volatilities, arrival intensities, and so forth. 

 Equation (1) is a forecasting device, and is not intended to represent the data generating 

process. Although the Wold Theorem ensures that the 𝜖𝑡 are uncorrelated, it is all but impossible 

for them to be independent. The discreteness of the price realizations can generally only be 

obtained by allowing for extensive serial dependence in the higher-order moments of 𝜖𝑡.  

 In addition to the VECM and VMA, the system also possesses a random-walk representation 

𝑝𝑡 = 𝑚𝑡𝜄 + 𝑠𝑡 (3) 

where 𝑚𝑡 is a scalar random-walk process and 𝑠𝑡 is a zero-mean covariance stationary process. It is 

natural in microstructure applications to identify 𝑚𝑡 as the efficient price and 𝑠𝑡 as the pricing 

error. The random-walk representation is not fully identified: 𝑚𝑡  and 𝑠𝑡 cannot be recovered 

                                                             
2 Microstructure VECMs are sometimes used in situations where the cointegration relationships 
arise from no-arbitrage conditions. In such cases, the coefficients in the cointegration vectors will 
generally differ from ±1. Specifications also frequently incorporate endogenous variables that are 
not cointegrated, such as signed orders or prices of other securities. This paper discusses high-
resolution modeling for a particular VECM, but the approaches generalize to these other common 
cases.  
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without additional assumptions (Beveridge and Nelson (1981); Stock and Watson (1988)). The 

variance of the random walk increments is identified, however. Let 𝜃(1) denote the value of 𝜃(𝐿) 

evaluated at 𝐿 = 1,  that is, the convergent sum, 𝜃(1) = 𝐼 + 𝜃1 + 𝜃2 + ⋯. The quantity 𝜃(1)𝜖𝑡 is the 

cumulative long-run predicted price changes implied by an initial shock 𝜖𝑡. Due to the cointegration, 

the rows of 𝜃(1) are identical. Intuitively, since all prices in the system refer to the same security, 

they are all predicted to move, in the long run, by the same amount. Let 𝜃(1)∗ denote any row of 

𝜃(1), and let 𝑤𝑡 = 𝑚𝑡 − 𝑚𝑡−1 denote the random-walk increment. Then 

𝑉𝑎𝑟(𝑤𝑡) = 𝜎𝑤
2 = 𝜃(1)∗ Ω 𝜃(1)∗

′ . (4) 

The variance or standard deviation of the random-walk component is an important attribute of the 

model. If the 𝜖𝑖𝑡 are mutually uncorrelated, then Ω is diagonal. In this case, r.h.s. is a sum of n well-

defined terms, with the ith term driven only by 𝑉𝑎𝑟(𝜖𝑖𝑡).  The ith information share is 𝐼𝑆𝑖 =

𝑉𝑎𝑟(𝜖𝑖𝑡) 𝜎𝑤
2⁄ ,  the proportion of the random-walk variance that is attributed to the innovations in 

the ith price. 

 If the 𝜖𝑖𝑡 are correlated, then the information shares are not uniquely defined. In such cases, 

they can be characterized by upper and lower bounds defined by alternative Cholesky 

factorizations of Ω. Many analyses simply report the midpoints of the range. Contemporaneous 

correlation in the innovations often arises from time aggregation, however, essentially the blurring 

of orderings within the interval. Higher resolution can directly alleviate these effects, thereby 

establishing bounds that are much tighter.  

 The information share is a popular price discovery measure, but others have been 

advocated. The alternatives include: the component share (CS, see Harris, McInish, Shoesmith and 

Wood (1995)); joint use of the IS and the CS, Yan and Zivot (2010); the unobserved components 

approach of De Jong and Schotman (2010); the tail dependence measure, Grammig and Peter 

(2013); the information leadership share, Putniņš (2013); and the information percolation share, 

Hagströmer and Menkveld (2017). 3 The present analysis uses information shares to illustrate the 

essential features of the high-resolution analyses, but it bears mention that most of the alternative 

                                                             
3The information and component shares are discussed at length in the Journal of Financial Market’s 
special issue on price discovery measurement (Baillie, Booth, Tse and Zabotina (2002); de Jong 
(2002); Harris, McInish and Wood (2002, (2002); Hasbrouck (2002); Lehmann (2002)). 
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measures are also based on linear multivariate models. To the extent that contemporaneous 

correlations generally muddy causal and informational attributions, it is likely that these measures 

might also benefit from higher resolution. 

 The error correction terms, 𝛾𝐵𝑝𝑡−1 in (1), are constructed in the usual fashion, as deviations 

lagged one period. These quantities are sometimes viewed as arising from arbitrageurs who learn 

about cross-market price discrepancies with delay (see Kumar and Seppi (1994), for example). At 

the shorter timescales considered here, however, it is likely that the delays are longer than one lag, 

and that for any given agent the delays differ across markets. If an arbitrageur learns about 𝑝1𝑡 and 

𝑝2𝑡 with delays of 𝛿1 and 𝛿2 periods, her arbitrage flows would be driven by 𝑝1,𝑡+𝛿1
− 𝑝2,𝑡+𝛿2

. This 

suggests that variation in information sets might be explored by examining alternative timing in the 

error correction terms. Cointegration, though, is a long-term property of the system. Engle and 

Granger (1987) note, “In [the VECM] representation, only the disequilibrium in the previous period 

is an explanatory variable. However, by rearranging terms, any set of lags of the z [errors] can be 

written in this form, therefore it permits any kind of gradual adjustment toward the new 

equilibrium,” (p. 255). In short, the convention of defining the disequilibrium as of 𝑡 − 1 does not 

impose any restrictions on the dynamics of the system. 

B. Parameterization 

With, say, 𝑛 = 4 prices and 𝐾 = 1 × 106 lags, the VECM in (1) possesses over sixteen million 

coefficients. One approach to reducing the size of the parameter space is to constrain these 

coefficients to be constant over predefined lag ranges. In the context of realized volatility 

forecasting, Corsi (2009) suggests a univariate heterogeneous autoregressive (HAR) model. Corsi’s 

specification is heterogeneous in timescales, and forecasts daily realized volatility as a linear 

function of daily, weekly and monthly components. His equation (8) is:  

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝑐 + 𝛽(𝑑)𝑅𝑉𝑡
(𝑑)

+ 𝛽(𝑤)𝑅𝑉𝑡
(𝑤)

+ 𝛽(𝑚)𝑅𝑉𝑡
(𝑚)

+ 𝜔𝑡+1𝑑, (5) 

where the RVs on the r.h.s. are estimated over daily, weekly, and monthly lags, and the 𝛽s are scalar 

coefficients. It is worth emphasizing that this is a daily forecasting model, and that all components 

are observed at the highest (daily) frequency. It differs in this respect from typical mixed data 
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sampling (MIDAS) situations wherein the forecasts may be updated frequently, but some of the 

predictors are only observed at lower frequencies.  

 Since realized volatilities are additive, specification (5) can also be expressed solely in terms 

of the daily RVs:  

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝑐 + 𝜙0𝑅𝑉𝑡
(𝑑)

+ 𝜙1𝑅𝑉𝑡−1𝑑
(𝑑)

+ ⋯ + 𝜙22𝑅𝑉𝑡−22𝑑
(𝑑)

+ 𝜔𝑡+1𝑑 (6) 

The lag over 22 trading days captures the monthly horizon. This is equivalent to (5) if the 

coefficients are constant within each of the sets {𝜙0}, {𝜙1, … , 𝜙4}, and {𝜙5, … , 𝜙22}. That is, the 

coefficients are constrained to lie on a step function. Despite the equivalence of the two 

specifications, they might give the appearance of different modeling strategies, with (5) 

emphasizing smoothing (or pre-averaging) of the data, and (6) suggesting a smoothing of the model 

parameters.  

 Bollerslev, Patton and Quaedvlieg (2016) summarize the current state of the HAR model. 

They note that, “[It] has arguably emerged as the most widely used realized volatility-based 

forecasting model.” It has furthermore served as a useful starting point for extension. From a 

statistical perspective, the present paper adapts the modeling logic of the HAR model to VAR/VECM 

settings. The HAR coefficient scheme preserves high resolution at short lags, and tolerates lower 

resolution at longer lags. The same principle is applied here. 

 The paper explores sequences of models estimated at progressively higher resolutions. The 

data sample is defined by a finite interval (0, 𝑇] over which each price has a finite number of jumps. 

This sample is partitioned into subintervals of width d, 𝑑 ∈ {1 𝑠, 100 𝑚𝑠, 10 𝑚𝑠, 1 𝑚𝑠, 100𝜇𝑠, 10𝜇𝑠}. 

Thus, d denotes the resolution of an analysis. In any given interval, the modeled datum is the price 

established as of the end of the interval. For simplicity, all analyses have the same maximum lag in 

natural time (10 seconds). In this framework, a representative equation for Δ𝑝𝑖𝑡 in the VECM will 

have the form  

Δ𝑝𝑖,𝑡𝑑 = 𝛾𝑖𝐵𝑝𝑡𝑑−1 + ∑ ∑ 𝜙𝑘
𝑖𝑗

Δ𝑝𝑗,𝑡𝑑−𝑘

𝑀

𝑘=1

𝑛

𝑗=1

+ 𝜖𝑖𝑡 (7) 

where 𝑀 = 10 𝑑⁄ , and 𝑡 = 1, … , 𝑇 𝑑⁄  (ignoring the handling of initial values).  
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 For each 𝑖, 𝑗 pair there are M autoregressive coefficients. Suppressing the 𝑖, 𝑗 indices for 

expositional clarity, they are constrained as follows. For 𝑑 = 1𝑠, 𝜙1 is unrestricted, and 𝜙2 = ⋯ =

𝜙10. For 𝑑 = 0.1𝑠, 𝜙1 is unrestricted, 𝜙2 = ⋯ = 𝜙10, and 𝜙11 = ⋯ = 𝜙100; for  𝑑 = 0.01𝑠, 𝜙1 is 

unrestricted, 𝜙2 = ⋯ = 𝜙10, 𝜙11 = ⋯ = 𝜙100, and 𝜙101 = ⋯ = 𝜙1,000. Essentially, with each ten-

fold increase in resolution, the nearest lag term is replaced by ten higher-resolution terms. Within 

this latter set, the first coefficient is unrestricted, and the last nine are set to the same value. Table 1 

describes the lag intervals covered at each level of resolution. Note that the maximum lag is 

constant in natural time, ten seconds across all resolutions. Thus, the progression to higher 

resolution at short lags is not achieved at the expense of progressively lower resolution at long lags.  

 The motivation for this coefficient arrangement is primarily reduction in the size of the 

parameter space to achieve computational tractability. Equivalently, though, the restrictions can be 

viewed as constructing, on the right-hand side of (7), time-aggregations of the high-frequency data. 

In addition to the HAR model in Corsi (2009), similar terms arise in the HAR-RV-J model (Andersen, 

Bollerslev and Diebold (2007), and the step-function MIDAS specification (Forsberg and Ghysels 

(2007),Ghysels, Sinko and Valkanov (2007). Ghysels, Sinko and Valkanov also discuss 

generalizations based on polynomial distributed lags (PDLs) and beta polynomials.   

 Although PDLs have been used in microstructure VARs, the lengths involved are typically 

small. The segments used in Hasbrouck (1995, 2003), for example, extend to 300 lags (five minutes 

of one-second data). The present applications use lags up to one million. These lengths require 

special computational approaches.  There are two costly computations: assembly of the cross-

product matrix and inversion of the VECM to obtain the VMA. Relying on sparsity and the general 

form of the constraints, the first of these calculations, normally involving nested summations over 

all lags of all variables, may be reworked to run over the non-zero data values only. The second 

calculation may not be needed for some purposes: the random-walk volatility and the information 

share bounds can be determined from the VECM estimates using the representation theorem of 

Engle and Granger (1987).4 Only if we wish to construct the impulse response functions is the 

inversion of the full VECM necessary. This is facilitated computationally by treating long polynomial 

                                                             
4 This approach is discussed by de Jong (2002) and De Jong and Schotman (2010). I’m grateful to 
Fulvio Corsi and Frank de Jong on this point. 
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sums of lagged disturbances as state variables that are updated rather than fully recomputed at 

each forward iteration of time. Construction of the cross product matrix and the inversion of the 

VECM are discussed more thoroughly in the computational appendix to this paper (available at 

http://stern.nyu.edu/~jhasbrou).  

 The coefficient constraints render estimation of a large multiscale multivariate time series 

model computationally feasible. This is an important point in its favor. It is also likely, however, to 

cause some degree of misspecification. There are two immediate concerns. Firstly, the Engle-

Granger result regarding the irrelevance of the 𝑡 − 1 convention in defining the cointegration errors 

(noted above) holds only for unrestricted VECMs. Secondly, the errors in the constrained 

specification may not be uncorrelated, and this will complicate determination of standard errors. 

These limitations pertain specifically to the model proposed here. The usual general concern with 

economic inference also applies. That is, the economic implications regarding attribution of 

information may be incorrect if the expectations formed by market participants differ from those 

implied by the model. 

 Statistical models of security prices that span many timescales are generally economically 

motivated by the observation of clienteles active at different horizons, ranging from high-frequency 

traders to long-term investors. These interactions implicitly map to latent statistical components 

that are also differentiated by timescale. Corsi invokes this logic, and refers to Müller, Dacorogna, 

Davé, Pictet, Olsen and Ward (1993). Crouzet, Dew-Becker and Nathanson (2016) suggest a 

frequency-domain equilibrium model. 

C. Statistical properties of the estimates 

The equations that comprise the VAR/VECM are estimated by least squares. It should be noted at 

the outset that by traditional measures (such as 𝑅2), fit quality is likely to be poor. The situation is 

analogous to that encountered in ARCH/GARCH models when they are viewed as forecast models 

for squared or absolute returns. It is more appropriate to view them as forecasts of unobservable 

conditional variances (Andersen and Bollerslev (1998)). In the present case, the VAR/VECMs are in 

a sense implicitly forecasting conditional event arrival intensities, where the probability of an event 

in any one observational interval is extremely small. 

http://stern.nyu.edu/~jhasbrou
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 Hamilton (1994) and Lütkepohl (2005) discuss the asymptotic distribution of VECM 

parameter estimates and impulse response functions. (The asymptotic distribution of information 

shares can be obtained by the delta method.) These results assume, however, that the model is 

correctly specified. While this might be the case in present applications, it would certainly be 

prudent to consider robust alternatives. Corsi (2009) reports Newey-West standard errors on his 

HAR specifications. In principle, Newey-West could be applied to high-resolution models, but the 

calculations would require calculation of all residuals, a computation that would not benefit from 

the sparsity of the original data. The same consideration applies to bootstrapping.  

 Microstructure data samples, however, are quite large. This suggests, following Bartlett 

(1950), constructing a series of point estimates from non-overlapping subsamples, and basing 

inference on the distribution of the independent estimates.  The present paper adopts this strategy. 

Typically, though, microstructure applications involve panels of firms tracked over time. In such 

studies the standard errors of, say, individual firm-day estimates, may be of lesser importance. 

Tests of broader hypotheses are accomplished by examining coefficients in panel regressions that 

can easily incorporate firm and time fixed and random effects. 

III. Natural and event time 

Microstructure data are often modeled in event time. That is, the time index is treated as a counter 

over trades, quote updates, and so forth. The computations involve a much smaller number of 

observations and so pose no special computational difficulties. The connection with natural time is 

severed, but this may be acceptable in many situations, as the economic models underlying the 

statistical constructs are often set in notional time. Security payoffs are ultimately linked to natural-

time physical production and consumption processes, but informational and strategic dynamics are 

likely to be more flexible.  

 At daily timescales, price volatility is strongly connected to the pace of trading. 

Consequently, event time, “trading time” and “business time” have often been chosen as the implicit 

clock of the trading process (see the discussion in Shephard (2005)).5 Event-time clocks are widely 

                                                             
5 If variation in some latent information intensity process simply sped up or slowed down market 
events, though, we’d expect that the arrival rates of different events (quotes, trades, market orders, 
limit orders and so on) would rise and fall, proportionately and in unison.  An analysis of the NYSE’s 
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used in price discovery analysis. Brogaard, Hendershott and Riordan (2015), for example, estimate 

a rich event-time model of orders originating from high-frequency traders (HFTs) and non-HFTs. 

Because lags that are long and variable in clock time may be short and regular in event time, event-

time models are generally much more computationally tractable than natural-time models. In view 

of these considerations, I also estimate here event-time counterparts to the natural-time models. 

 Event-time specifications may be difficult to interpret, though, if natural time plays a role in 

the event definition. An event might stem from an action that in the very short run would have been 

available only to HFTs, but at longer intervals might have been used by anyone. A larger 

consideration is that an event clock is inherently tied to the event space. Adding events (such as 

trades or quotes for another security) or refining an existing event (distinguishing trades occurring 

on different exchanges, for example) changes the clock, possibly changing the event-time 

separation between unrelated events. Furthermore, it is difficult to map the forecasts from event-

time models into natural time. 

 Event-time modeling suppresses the informational and strategic content of interarrival 

durations, implicitly suggesting that in the absence of an event nothing of economic consequence is 

occurring. Many economic models, however, suggest otherwise. In Easley and O'Hara (1992), non-

occurrence of trade causes dealers to revise (downward) their conditional beliefs about the 

probability of an information event. 

 Midway along the continuum between event- and natural-time approaches are models that 

treat the location of events in natural time as exogenous, and then, conditional on these arrival 

times, allow the event-time VAR to incorporate some dependence on interarrival times. Dufour and 

Engle (2000) suggest an ACD model for trade occurrences. Then, letting 𝑇𝑖 denote the interarrival 

duration for the ith trade event, the event-time VAR includes adjustments for ln(𝑇𝑖) that effectively 

weight trades in the distant past less heavily than recent trades. This provides a connection to 

natural time, but only in one direction. The posting of an aggressively-priced bid, for example, does 

not influence the arrival rate of orders.  This model can model a trade-price dependence that 

weakens over time. Forecasting, however, requires simulation to generate the event times. 

                                                             
TORQ events (a 1990 sample) suggested that although there was some commonality, time variation 
in the diverse arrival rates was far from homogenous (Hasbrouck (1999)). 
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Additionally, if there are different types of events, the approach requires multiple arrival models, or 

some sort of discrete choice mechanism to generate the event type at a given arrival time. 

 Timescale properties of economic time series are sometimes characterized using Fourier or 

wavelet representations.6 These transformations do not usually highlight the innovations in the 

series, however, which makes them less attractive for informational attributions. There are also 

computational complications because the transforms do not preserve the sparsity of the initial data. 

(The Fourier transform of a series of length N will generally have N nonzero values even if the 

original series has only one nonzero value.) 

IV. Data 

The study examines two actively-traded stocks, IBM and NVIDIA. IBM’s primary listing exchange is 

the NYSE; NVDA’s is NASDAQ.  IBM is a Dow stock; NVIDIA is not. Some of the results are based on a 

detailed analysis of October 3, 2016 (the first trading day in the month). The sample was 

subsequently extended through November 11, 2016 (for a total of thirty trading days). Key 

statistics are averaged over the thirty daily estimates and reported along with their standard 

errors. The data are taken from the WRDS SAS copy of the NYSE’s Daily TAQ database, (NYSE 

(2017)). Each trade or quote record contains two timestamps, a participant time and a SIP 

(securities information processor) time. These are discussed in the next section. Both NASDAQ and 

the NYSE open trading around 9:30 with a single-price double-sided auction. As the auction 

mechanism differs substantially from regular continuous trading procedures, the present 

estimations are confined to the 9:45-16:00 interval.  Table 2 reports summary statistics. Quote 

updates are clearly the most voluminous series, but often only a fraction of these will correspond to 

substantive changes. For example, of the 893,413 quote updates for NVDA, only 28,128 of these 

reflected a change to the NBB or NBO. (The other updates were caused by bid or offer changes away 

from the NBBO or changes to posted sizes.)   

                                                             
6 Gençay, Selçuk and Whitcher (2002) discuss wavelet analysis of market data. Recent applications 
include Chinco and Ye (2016) and Hasbrouck (2018). 
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V. Timestamps and reporting delays 

Bartlett and McCrary (2016) discuss in depth the timing conventions in US equity markets. The 

following material summarizes features essential for present purposes. In a computerized market, 

the matching engine is the innermost system that implements the essential features of the trading 

protocol.7 The matching engine’s timestamp is the best available indication of the occurrence time 

of an event, such as a quote update or execution. It is identified in the TAQ data as the participant 

timestamp. 

  The event is transmitted to the participant market’s direct subscribers (including members 

with trading privileges). It is also transmitted (simultaneously, by law) to a securities information 

processor (SIP), in the present case, the Consolidated Tape Association (CTA), which broadcasts 

over multiple connections (technically, “multicasts”) the event more widely. Traditionally, the CTA 

record (the consolidated tape) has been viewed as the authoritative source of market data. Prior to 

June 28, 2013, the CTA timestamp was the multicast dissemination time. Subsequently (and 

currently) it simply indicates the time when “processing the message was completed [by CTA]”.  In 

the TAQ documentation it is simply denoted “Time”, but for the sake of clarity it will be referred to 

herein as the SIP time. Essentially the participant time marks the earliest time that the fastest 

traders could have learned about the event, while the SIP time marks the event’s appearance on the 

consolidated feed.  

 Ding, Hanna and Hendershott (2014) examine the lag in CTA reporting. Their data consist of 

messages received by a vendor located at the BATS data center over a brief period in 2012. The 

vendor received quote updates via direct and consolidated feeds, allowing DHH to assess latency 

and to construct two alternative NBBOs.  In one sense, the lag in the consolidated feed is small, 

averaging only of 1.5 milliseconds. DHH also find, however, numerous brief discrepancies 

(dislocations) in the best bid and offer, depending on which source is used.  They conclude that the 

dislocations are costly for frequent traders. 

Bartlett and McCrary (2016) examine the differential lags for the Dow-Jones stocks in a 

sample (August 2015 through June 2016) based on the participant and SIP times on the TAQ 

                                                             
7 Authorization, checking for potential trade-through violations, routing, advanced order handling 
(such as pegged or discretionary orders), drop copy, and similar functions are often handled by 
auxiliary systems that are distinct from the matching engine. 
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database. They find that the consolidated quote updates lag the direct feeds by an average 1.1 ms, 

but that the lag in trade reports is much larger (21.6 ms). The differential lag between trades and 

quotes is consistent with participants’ incentives. A bid that has been raised or an offer that has 

been lowered must be disseminated to be protected under the Reg NMS order protection rule. A bid 

that has been lowered or an offer that has been raised signals withdrawal of a previously available 

price, and if not indicated promptly could give the impression that the market doesn’t honor its 

quotes.8 

The present analyses are dependent on the precision and synchronization of the 

timestamps. In the current daily TAQ specification, timestamp fields allow for nanosecond precision 

(NYSE (2017)). The timestamps for October 3, 2016, however, are generally only populated to 

microsecond precision. The CTA requires exchanges to synchronize their clocks to UTC to within 

one hundred microseconds, but this tolerance is generally bettered. Exchange participants 

indicated to the SEC that, “… absolute clock offset on exchanges averages 36 microseconds,” U.S. 

Securities and Exchange Commission (2016, p. 249). Bartlett and McCrary provide additional 

discussion. 

For each trade and quote record I compute a measure of reporting delays as the difference, 

denoted 𝛿, between the SIP and participant timestamps, measured in milliseconds. Table 3 

summarizes the sample distribution, by stock and by participant. Excepting the FINRA ADF, all of 

the participants are exchanges. The FINRA ADF is the alternative display facility, a reporting system 

widely used for dark trades. There is no corresponding system for quotes. In principle, 𝛿 shouldn’t 

be negative. A few negative values are present in the sample, however, reflecting clocks that are not 

precisely synchronized. At most exchanges, the median values are well under one millisecond. With 

the exception of the FINRA ADF subsample, the distributions are tight. 

 The present analysis constructs NBBO’s based on participant and SIP timestamps. Instead of 

using these as benchmarks for executions, I study the joint dynamics using the high-resolution 

VECMs described earlier. The estimates provide a good starting point for other analyses because 

the effects of the participant/SIP time differentials are easy to understand: the NBB and NBO 

                                                             
8 The quote/trade timing differential existed well before Reg NMS and the modern era of electronic 
markets (see, for example, Lee and Ready (1991)). 
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constructed from SIP times are noisy and delayed signals of the NBB and NBO computed using 

participant timestamps. 

 The VECM system comprises four variables. 𝑁𝐵𝐵𝑝𝑎𝑟𝑡 and 𝑁𝐵𝑂𝑝𝑎𝑟𝑡 are constructed from 

the participant timestamps. I order all quotes by participant times and build a running record of the 

bid and offer posted by each exchange. 𝑁𝐵𝐵𝑝𝑎𝑟𝑡 and 𝑁𝐵𝑂𝑝𝑎𝑟𝑡 are the max and min of the bid and 

offer over all exchanges’ current quotes.  Following the usual CTA practice, zero bids or offers 

indicate that an exchange has withdrawn its quote. When this happens, the exchange is dropped 

from the max or min calculation (until it posts a valid bid or offer). 𝑁𝐵𝐵𝑠𝑖𝑝 and 𝑁𝐵𝑂𝑠𝑖𝑝 are 

similarly constructed but using the SIP timestamps. If the reporting delay were a constant 𝛿0 at all 

exchanges, we would have 𝑁𝐵𝐵𝑠𝑖𝑝𝑡 = 𝑁𝐵𝐵𝑝𝑎𝑟𝑡𝑡+𝛿0
 and 𝑁𝐵𝑂𝑠𝑖𝑝𝑡 = 𝑁𝐵𝑂𝑝𝑎𝑟𝑡𝑡+𝛿0

, and the VECM 

system would be singular. The randomness in the delays removes this determinacy. 

 I estimate the system in natural time at resolutions of 1.0, 0.1, 0.01, 0.001, 0.0001, and 

0.00001 seconds.  The parameter estimates are not reported, for the sake of brevity, but they may 

be characterized as follows. At the lowest (one-second) resolution, the coefficient estimates are 

noisy, with a few t-statistics around two, but with most insignificant. At higher resolutions, the 

estimates are generally very significant, with t-statistics in the hundreds, particularly for the 

shorter lags and the error correction coefficients. Table 5 reports the random-walk volatilities and 

information shares. 

 For ease of interpretation, the random-walk volatilities (𝜎𝑤s) are scaled to units of dollars 

per share, per year.9 An approximate annual return volatility is obtained by dividing the reported 

𝜎𝑤 by price per share. Using the average share prices from Table 2, these volatilities are 

approximately 12% for IBM and 18% for NVDA. The random-walk volatility, 𝜎𝑤, is in principle a 

property of the long-run behavior of the system. It should not depend on the modeling of the short-

term high-resolution components. This is in fact the case: the estimates vary minimally across 

resolutions. This is a general property of all the natural time analyses in this paper. 

                                                             
9 The details are as follows. For a given resolution, let d denote the width of an interval in seconds. 
The units of the Δ𝑝𝑡 in the VECM are dollars per share per d. The original units of 𝜎𝑤

2  are therefore 
[($ 𝑠ℎ𝑟⁄ ) 𝑑⁄ ]2. This is scaled to an annual variance by multiplying by a factor:  

250 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
×

6.5 ℎ𝑜𝑢𝑟𝑠

𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦
×

3,600 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

ℎ𝑜𝑢𝑟
× 

1

𝑑
. 

The random-walk volatility reported in the table is the square-root of the annual variance. 
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 To highlight the relative contributions of participant-based and SIP-based quotes, the table 

reports grouped information shares, computed over variable sets {𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡} and 

{𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝}. As usual, these shares can only be bounded. At the lowest time resolution, the 

bounds are uninformative, identical for the participant and SIP groups, and spanning the unit 

interval. At the highest resolutions, however, the bounds are quite narrow, attributing essentially 

all the price discovery to the participant data. The tightness of the bounds is closely linked to the 

innovation correlations in the off-diagonal block (𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡) × (𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝). The 

largest value is near unity in the one-second analysis and close to zero in the ten-microsecond 

estimates. The overall pattern is clear and sensible: variation that appears contemporaneous over 

long intervals is easily picked apart at higher resolutions.  

 As a point of comparison, I estimate event-time specifications. For each price I take the last 

value in a given microsecond (the precision of the timestamps), then merge and sort on time. After 

that step, the timestamps are dropped and the data are treated as sequenced events.  The event-

time VECM includes ten lags of all prices and the coefficients are unrestricted. Table 5 reports the 

estimated min and max information shares. (Estimated random-walk volatilities are not reported: it 

is unclear how one might assign an economic interpretation to an event-time volatility.) 

 The estimated event-time information shares are quite close to their high-resolution 

natural-time counterparts, and they assign virtually all the leadership to the prices with participant 

timestamps. This is not surprising because the delay in realizing the SIP prices is random but 

largely mechanical. It is captured quite adequately in an event-time specification. 

 Panel B of Table 5 reports summary statistics for daily estimates of the 10-microsecond 

natural-time and event-time specifications (over the thirty-day sample). These results are 

consistent with the October 3 results: the information shares attribute virtually all price discovery 

to the NBBO constructed from participant timestamps. For NVDA the volatility is higher in the 

longer sample: on the last day (November 11) a positive quarterly report caused a 30% gain.  

 The random-walk volatility and the information shares characterize the persistent effects of 

the innovations.  The transient dynamics are best illustrated by the impulse response functions. 

For brevity, a representative example is reported is lieu of the full set of IRFs.  Figure 1 depicts, at 

each of the six resolutions, the cumulative response in 𝑁𝐵𝐵𝑠𝑖𝑝 to a one-dollar shock in 𝑁𝐵𝐵𝑝𝑎𝑟𝑡 at 
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time zero. To clarify the short-run behavior at higher resolutions, the time axis is logarithmic.  On a 

logarithmic scale “time zero” is not displayed. The first update in the one-second analysis occurs at 

one-second, the first-update in the 0.1 second analysis, at 0.1 seconds, and so forth. Panel A 

contains the IRFs for IBM; panel B, for NVDA. 

 The IRFs exhibit some distinctive visual features. They are kinked, a direct consequence of 

the step functions on which the VECM coefficients are constrained to lie. Many of the IRFs also 

exhibit a “scalloped” appearance. This is a visual artifact created by the logarithmic timescale. 

Between step transitions, the IRF is roughly linear. The concavity of the log function induces (on the 

horizontal axis) a distortion that produces the scalloped paths. 

 For both stocks the IRFs estimated at one-second resolution differ visibly from the higher-

resolution estimates, with strong differences in short- and long-run behavior. This is a reflection of 

the apparent noisiness in the one-second estimates noted earlier. As we move to higher resolution 

analyses, however, the IRFs become more consistent.  

 Adjustment paths exhibit some overshooting and reversion. For the paths associated with 

the 100ms, 10ms and 1ms resolutions, most of the initial adjustment appears to take place at the 

first step ahead; the reversion is subsequent. The paths implied by the 100µs and 10 µs resolution 

analyses, on the other hand, show a gradual initial adjustment. Interestingly, the 10 µs IRF displays 

no adjustment in the first ten steps (through 100 µs). This is consistent with the finding that the 

SIP/participant lags found in the earlier studies are around at least 100 µs. Although not 

unexpected, this result affirms that nothing in the empirical approach inherently attributes 

adjustment where none is present. 

 Several other features of the graphs merit comment. It was earlier noted that the long-term 

behavior, summarized in the random-walk volatility, is unaffected by resolution. The IRFs at 

different resolutions, however, converge to visibly different initial values, despite having been 

constructed from the same initial shock. The source of this apparent inconsistency lies in the 

contemporaneous correlation of the innovations.  At lower resolutions, these correlations are 

substantial. The initial disturbance driving the IRF, in putting a one-dollar shock on 𝑁𝐵𝐵𝑝𝑎𝑟𝑡 and 

setting the other disturbances to zero, ignores the contemporaneous effects that are captured more 

completely at higher resolutions. 
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VI. Price discovery across exchanges 

Economists and regulators have long debated the merits of fragmented and consolidated financial 

markets.10 Numerous studies, therefore, examine relative informational contributions of exchanges 

and trading mechanisms. Two of the early papers that suggested price discovery measures (Harris, 

McInish, Shoesmith and Wood (1995) and Hasbrouck (1995)) focused on US equity markets. 

Recent representative studies cover: Swiss equities, Grünbichler, Kohler and von Wyss (2017); bid 

and ask quotes for NYSE and Spanish stocks, Pascual and Pascual-Fuster (2014); recent US equity 

markets, Ozturk, van der Wel and van Dijk (2017). The last study examines cross-sectional and 

intraday time variation in its price discovery measures. 

 In the 1990’s NYSE samples studied by Harris et al and Hasbrouck, the NYSE’s informational 

contribution is overwhelming. (Harris et al find the NYSE’s adjustment to other exchanges’ prices to 

be small; Hasbrouck finds an average NYSE information share of 91.3%.) In that era, however, the 

NYSE dominated trading in its listed securities. In the Hasbrouck 1993 sample, the average NYSE 

market share is 84.3% by share volume. It is somewhat lower by number of trades (54.6%), but 

these were viewed as originating primarily from uninformed retail traders. Thus, to a good 

approximation, the NYSE information share mirrored its share of trading volume.  

 In more recent years, and particularly post Reg NMS, activity is more dispersed, and the 

market shares of listing exchanges are lower. In their 2013 sample, Ozturk et al find the NYSE’s 

share of NYSE-listed securities to be 30.7% by trades and 27.5% by volume. Their corresponding 

figures for NASDAQ (in NASDAQ-listed stocks) are 40.9% and 42.7%. It would be reasonable to 

conjecture that the listing exchanges’ information production is commensurately low. Ozturk et al 

report average NYSE information shares of 49.7% (allowing for intraday variation) and 61.9% 

(with no intraday variation). The corresponding figures for NASDAQ are 39.7% and 35.3%. Thus, 

the NYSE’s information share is about twice as large as its trading market share, and NASDAQ’s 

information share is comparable to its trading share. 

 Table 4 Panel A summarizes the trading activity by market center for IBM (NYSE-listed) and 

NVDA (NASDAQ-listed). NYSE activity in IBM comprises 18.0% (by trade count) and 20.8% (by 

                                                             
10 Recent works include Hatheway, Kwan and Zheng (2017); Kwan, Masulis and McInish (2015); 
O'Hara and Ye (2011). 
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trade value). NASDAQ’s corresponding figures for NVDA are 27.4% and 22.0%. These market 

shares are well below the Ozturk et al sample averages noted above. For both stocks, the largest 

reporting “market” is the FINRA ADF, which will be discussed in the next section. 

 For both stocks, using participant timestamps, I extract the bid and offer from the listing 

exchange, denoted 𝐵𝑖𝑑𝐿𝑒𝑥 and 𝐴𝑠𝑘𝐿𝑒𝑥. I also synthesize a best bid and offer from the remaining 

exchanges, denoted 𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟 and 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟.  I then estimate a four-variable VECM consisting of 

{𝐵𝑖𝑑𝐿𝑒𝑥, 𝐴𝑠𝑘𝐿𝑒𝑥, 𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟, 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟} and compute information share bounds, at all resolution 

levels. For clarity in presentation, the information shares are grouped as listing exchange and other. 

 Table 6 summarizes the analyses. Across resolutions (Panel A), the random-walk volatilities 

are fairly constant. They are also very close to the corresponding estimates in Table 5. This is not 

surprising: all variables are prices; all systems are estimated over the same sample period. The 

modeled prices differ in the particulars of their construction, but they are all cointegrated, and 

therefore exhibit similar long-run behavior. 

 As in the previous analysis, the information share bounds are very wide at a one-second 

resolution, and tighten considerably in the high-resolution analyses. The striking finding here is 

that even though the primary listing exchanges’ market shares are around 20%, the information 

shares are still over 50%. This may be related to the presence at the primary exchanges of 

designated market makers (DMMs). Ye, Clark-Joseph and Zi (2017) find that liquidity deteriorates 

significantly when trading is interrupted on primary listing exchanges, and attribute this to the 

absence of DMMs. 

 The IS bounds are noticeably wider, though, in the event time analysis. The precise reasons 

for this are unclear, but the result underscores the fundamental differences between natural- and 

event-time frameworks. The event-time framework generally compresses the distance (on the time 

scale) between events, and discards natural time intervals over which no price change occurs. 

Events widely separated in natural time may be contiguous in event time. In natural time, a zero 

price change will generally have a non-zero residual associated with it, which will make its due 

contribution to the innovation variances. In short, the estimated innovations are very different in 

the two frameworks. These differences may extend to the off-diagonal elements of the innovation 
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covariance matrix (which determine the upper and lower bounds). Panel B reports means and 

standard errors over the full 30-day sample, and these are in line with the one-day results. 

VII. Quotes and trades (lit and dark) 

Determining the relative information contributions of trades and quotes is a third question of 

ongoing importance. The classic asymmetric information models take the view that all 

informational advantage is held by some liquidity demanders, and that the information is partially 

revealed by their trades (Glosten and Milgrom (1985); Kyle (1985)). This perspective suggests a 

clean dichotomy: public information is reflected in the quotes, and private information, in the 

trades. This was always regarded as an oversimplification. Experimental evidence suggests that 

informed traders will post limit orders (Bloomfield, O'Hara and Saar (2005)). Furthermore, the 

traditional liquidity suppliers (dealers and specialists and so forth) have been partially displaced by 

high-frequency traders. The latter are commonly viewed as possessing better information on short-

term information asymmetries. If they are acting as liquidity suppliers, they can avoid being picked 

off, and can update their bids and offers more promptly. This should enhance liquidity and the 

information content of their quotes. They can quickly become liquidity demanders, however, 

picking off limit orders posted by others. In this capacity they are essentially active informed agents 

and their information enters the market through their trades.  Brogaard, Hendershott and Riordan 

(2015) find that information shares of quotes have generally increased, and that the bids and offers 

of high frequency traders (HFTs) are more informative than those of non-HFTs. 

 Related questions concern dark trades, that is, trades occurring at prices where the 

executing market has not posted a visible bid or offer. Hendershott and Jones (2005) examine a 

natural experiment in which Island, normally a “lit” market, was prevented from disseminating its 

quotes. Although its market share of trading activity fell substantially, the information share of its 

trades remained high. In other situations, dark markets are often thought to favor uninformed 

order flow (such as retail traders or passive institutions). This leaves the “lit” exchanges more 

exposed to informed traders, weakening their incentives to post visible bids and offers. Using a VAR 

specification estimated at one-second intervals, Comerton-Forde and Putniņš (2015) find evidence 

consistent with this effect. 
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 Most (but not all) dark trades are reported to FINRA’s ADF (the alternate display facility). 

The breakdown of trading activity in Table 4, Panel A shows that the ADF is largest reporting 

channel. To investigate the information content of quotes, lit, and dark trades. I estimate four-price 

VECMs that include the NBB, NBO, last sale price on a lit trade (𝑡𝑟𝑎𝑑𝑒𝐿𝑖𝑡), and the last sale price on 

dark (ADF) trade (𝑡𝑟𝑎𝑑𝑒𝐷𝑎𝑟𝑘). Use of last sale prices removes the need to “sign” the trade as 

buyer- or seller- initiated. 

 Table 7 reports random-walk volatilities and information share bounds. As noted in the 

previous analyses, the random-walk volatilities remain stable across resolutions and across 

analyses. The information share bounds are constructed with the NBB and NBO combined as one 

group. As in the other analyses, the bounds corresponding to the one-second resolution are wide. 

Between trades and quotes at one second, we can’t tell which is informationally larger. The bounds 

also admit an informational contribution from dark trades. The findings sharpen considerably at 

higher resolutions of natural time. Quotes clearly dominate trades, and the contributions from dark 

trades essentially vanish. These findings hold for both high-resolution natural-time and event-time 

analyses. 

 Other results, however, differ between natural and event time. In the event-time analyses, 

the information shares for quotes are somewhat lower and the min/max bounds are wider. The 

means and standard errors in the thirty-day sample (Panel B) suggests that the natural/event time 

differences would be statistically significant in most cases. 

 Note that even at ten microsecond resolution, the information shares of quotes and trades 

are not completely resolved. In the timestamp and exchange analyses, the upper and lower bounds 

collapsed as the resolution increased, suggesting definitive attributions. In the present analysis, 

though, the gap between the bounds persists (around 6% for IBM, 4% for NVDA). This can be 

partially attributed to a mechanical effect. The execution of a buy order that takes the entire 

quantity available at the market’s offer price, for example, obviously causes a contemporaneous 

withdrawal of that offer and, if additional quantities are posted deeper in the book, a revised offer.  

 Appealing to this mechanism, early microstructure analyses often assigned 

contemporaneous precedence to the trade. In this view, following the logic of the sequential trade 

models, bids and offers were determined in an equilibrium involving dealers or limit order traders. 
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Quotes could be updated following new public information, but if a marketable order arrived, it was 

assumed to be the proximate cause of whatever quote revision immediately followed. This 

convention could be imposed econometrically by including contemporaneous trades as explanatory 

variables in quote-revision equations, or (in price discovery analyses) restricting Cholesky 

factorizations to those orderings that assigned precedence to trades. Current trading practices and 

order types, however, don’t offer such clear guidance. Both hidden and discretionary orders, for 

example, can easily lead to interactions in which a limit order submitted with passive intent turns 

out to be marketable (executable) on arrival. Causal attributions in these cases might potentially be 

resolved given the original orders, but not from the bid, ask and trade outcomes.11 

VIII. Bridging approximations 

A. Principles 

The high-resolution VECM models implemented to this point achieve parsimony through coefficient 

step functions at a range of timescales. All computation of estimates, impulse response functions, 

and variance decompositions nevertheless occurs at the highest resolution. The computational 

effort here is substantial: at 10𝜇𝑠 resolution, 500-second forecasts involves fifty million forward 

iterations of multivariate models with long coefficient lags. As the forecasts of levels (prices) 

involve accumulations of small differences, numerical accuracy may also be a concern. Bridging 

approximations combine analyses at different timescales, using high resolution models to 

characterize short timescales, and lower resolution models (with fewer iterations) for long term 

forecasts. 

 Bridging is commonly used to forecast macroeconomic variables in mixed frequency 

situations. For example, when one series is observed monthly and another, quarterly, monthly 

                                                             
11 In the case of hidden orders, suppose that the (visible) bid and offer are $10.00 and $10.10, and 
there’s a hidden sell order for 100 shares at 10.01. A trader intending to simply improve the bid 
submits an order to buy 300 shares limit 10.02. There is an execution of 100 shares at 10.01 
(against the hidden order), and the remaining 200 shares become the new bid at 10.02. That is, the 
incoming, presumptively passive, limit order both causes the execution and sets an improved bid. A 
discretionary order is a passive limit order that is automatically canceled and replaced with a 
marketable order when the opposing quote moves within the discretionary range. (The BATS 
webpage contains links to some animated examples.) A limit buy order intended to improve the bid, 
might be executed on arrival if the limit price lies within the range of a discretionary sell order. 
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predictions of the first series are aggregated to form quarterly forecasts, which are then used as 

inputs to the forecasting of the quarterly series (Bańbura, Giannone, Modugno and Reichlin 

(2013)). Because the high- and low-frequency forecast models are distinct (as opposed to being 

different representations of a single unified model), Bańbura et al describe the bridging approach as 

“partial”. The present applications would not generally be considered mixed-frequency, since all 

variables are observed at the highest frequency. The motivation here is computational efficiency. 

 As an overview, the bridging scheme starts with a low-order high-resolution VECM. In 

response to a high-frequency shock, the forecasts from this VECM are then time-aggregated and 

used as starting values for forecasting a coarser VECM. These forecasts are also time-aggregated, 

passed on as starting values to the next-coarser VECM, and so forth, stopping with long-run 

forecasts at the lowest resolution. These forecasts are approximations to those based on a 

correctly-specified high-resolution model. Because the shocks ultimately originate at the highest 

frequency, however, the high-frequency resolution is preserved. The algorithm suggests substantial 

computational gains in forecasting. Moreover, since the component VECM models might have 

relatively short lag structures, there may be computational gains in estimation as well. 

 More specifically, consider construction of a long-horizon high-resolution VMA from a 

sequence of VECM specifications of the form (1) where the lag length is 𝐾 = 10 at all resolutions. 

Starting at the highest resolution, say 𝑑 = 10𝜇𝑠, we estimate the first 10-lag VECM. Given an initial 

shock 𝑒0, the cumulative forecast ten periods ahead is 𝜓10𝜇𝑠,10𝑒0. We then estimate a 10-lag VECM 

at the next coarser timescale, 𝑑 = 100𝜇𝑠. The initial conditions for forecasting at this coarser scale 

are given by two points: the value at time zero and the forecast from the finer scale at 100𝜇𝑠, that is, 

𝑒0 and 𝜓10𝜇𝑠,10𝑒0. Denote the coarser ten-period price forecast by 𝜓100𝜇𝑠,10𝑒0. Then 

𝑒0 and 𝜓100𝜇𝑠,10𝑒0 establish the initial conditions for forecasting at resolution 𝑑 = 1𝑚𝑠, and so on. 

By construction, the long-term bridged forecasts are linear in the initial shock. This supports 

variance decompositions of long-term behavior based on high-resolution disturbance covariances. 

 If forecasting is the sole objective, the situation involves the familiar trade-off between 

computational effort and forecast error. If the aim is characterization of price discovery, though, 

derived measures (like information shares) are imbued with economic content. In this case, the 

nature and consequences of misspecification warrant deeper examination. 
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 By way of illustration, I consider a special case of model (1) with 𝑛 = 2 prices and 𝐾 = 100 

lags. For expositional convenience, the time units are nominally “seconds”. The autoregressive 

coefficient matrices are diagonal, and they are scaled as suggested in the discussion of equation (7): 

𝜙1 = 0.1𝐼; 𝜙𝑘 = 0.2𝐼 for 𝑘 = 2, … ,10; 𝜙𝑘 = 0.005𝐼 for 𝑘 = 11, … ,100. The ranges correspond to two 

timescales: 10 seconds (“short”) and 100 seconds (“long”). The AR coefficients sum to 0.73 (0.28 

from the first ten lags; 0.45 from the last ninety lags). The disturbances are i.i.d. 𝑁(0,1). (This 

analysis does not feature sparse jumps; the focus is on bridging.) The adjustment coefficients are 

𝛾 = [−0.01 0.02]. The half-life of the motion in 𝑝1 toward 𝑝2 is about 69 seconds, and that of 𝑝2 

toward 𝑝1is about 34 seconds, so the adjustments occur over both long and short timescales. 

Although the autoregressive coefficient structures are identical for both prices, the difference in the 

adjustment coefficients leads to different information shares. Since the adjustment of 𝑝2 toward 𝑝1 

is stronger than the reverse, 𝑝1 will be informationally dominant. 

 I simulate a series of one million observations, and estimate three models: 

• The correctly-specified model, which corresponds exactly to the data generating process, 

with one-second observations and 100 lags (“short and long”) 

• A truncated one-second model, with only 10 lags (“short”) 

• A ten-second time-aggregated model with 10 lags: 10-second price changes are computed 

(sampling at times 𝑡 = 10,20, ….) and the VECM has ten lags (“long”). 

The one-second/ten-lag model is clearly misspecified. The 10-second/10-lag model does not 

correspond to the DGP, but it does correspond to a time-aggregated skip-sampled VECM, and so, in 

a sense, could still considered correct. The estimates from the long and short models are used to 

construct a bridged model. 

 The differences in the models are most clearly illustrated by their impulse response 

functions. Figure 4 depicts for each model the IRF in 𝑝1 following a one-unit shock to 𝑝1. In the IRF 

corresponding to the correctly-specified model (“short and long”), the positive autoregressive 

coefficients impart an upward momentum to the price. The kinks at 10 and 100 seconds arise from 

the coefficient changes at those lags. As usual in these graphs, the scalloped appearance is an 

artifact of the logarithmic timescale. 



 Page 27 

 The IRF corresponding to the short model is initially elevated (relative to the correct model) 

because the estimated short coefficients are picking up variation due to the omitted long terms. The 

omission of the long terms also leads to reversion in the IRF. The IRF in the long model more closely 

resembles the correct model, but since the short terms are omitted, the long-horizon price forecast 

lies below that of the correct model. The bridged IRF is essentially a splicing of the short and long 

IRF’s. Comparing the short, long, and bridged IRFs, the bridged IRF forecast most closely resembles 

that from the correct model. 

 Table 8 summarizes price discovery analyses based on the four IRFs. The estimates 

corresponding to the correct model imply a random-walk volatility of 𝜎𝑤 = 2.745 (“dollars per 

second”). The information share bounds are tight. To three decimal places, the min and max of the 

𝑝1 information share are identically 0.798; those of the 𝑝2 information share are 0.202. The short 

model substantially underestimates the random-walk volatility (1.116), which is consistent with 

behavior of its IRF in Figure 4. The information share bounds are not as tight as the correct model, 

and they are biased in favor of 𝑝1. The long model estimate of the random-walk variance is close to 

the correct model. (This consistency is not surprising: random-walk variance is a long-run property 

of the price series.) The information share bounds, however, are much wider (at 0.121): the time-

aggregation in the ten-second innovations induces correlation. The bridged model achieves the best 

overall approximation to the correct model, with a modest upward bias on the random-walk 

variance, and tight bounds on the information shares. 

 Bridging specifications in macro mixed-frequency applications are mostly driven by the 

observation frequencies of the series being bridged. In the present applications, though, where all 

data are available at the highest resolution, and bridging is motivated by computational expedience, 

the bridging scheme can be much more flexible. The short model in the example was used to 

forecast one step ahead (at the coarser timescale), but forecasts two or more steps ahead might be 

better starting points for the next timescale.12  

                                                             
12 Alternatively, forecasts and impulse response functions might be estimated by direct estimation 
of multistep forecasts. In the present analyses, for an IRF k steps ahead this would entail the 
projection of 𝑝𝑡+𝑘 on 𝑝𝑡−1, 𝑝𝑡−2, …, and the error correction term 𝐵𝑝𝑡−1. This approach is developed 
for VARs by Jordà (2005), and extended to VECMs by Chong, Jordà and Taylor (2012). Each forecast 
horizon, though, requires reestimation of the full system. Additionally Marcellino, Stock and Watson 



 Page 28 

B. Applications 

This section applies bridging techniques to the three analyses described in Sections V, VI, and VII. 

The key questions are whether the bridged estimates are close to the regular (fully iterated) 

estimates presented earlier, and whether they achieve significant computational savings. 

 The details of the bridging procedure are as follows. At each resolution, specification (7) is 

estimated with 𝜙1 unrestricted, 𝜙2 = ⋯ = 𝜙10; 𝜙11 = ⋯ = 𝜙100; 𝜙101 = ⋯ = 𝜙1000. Then, using the 

highest-resolution VECM (10𝜇𝑠), and given an initial disturbance 𝑒0, I forecast 𝑝1, … , 𝑝100. The skip-

sample from this set, 𝑝10, 𝑝20, … , 𝑝100 provides ten starting values for the forecasts based on the 

100𝜇𝑠 VEC. I forecast 100 steps ahead (at the 100𝜇𝑠 resolution), and skip-sample to obtain starting 

values for the 1𝑚𝑠-resolution VECM, and so forth. I stop with the 0.1 second VECM and forecast out 

5,000 periods (500 seconds). This is a somewhat richer specification than that used for the 

simulated model in the preceding subsection. The logic of the procedure suggests that high-

resolution specifications and forecasts are likely to perform better than the low-resolution 

equivalents. The present specification uses lags that are longer than strictly necessary, and the 

forecasts are constructed one hundred steps ahead (rather than ten).  

 Figure 5 depicts the components of a bridged impulse response function. The situation is 

that considered in Section V, a four-price model consisting of bids and offers formed from 

participant (exchange) and SIP (reporting) timestamps. The IRF depicts the bridged response in the 

SIP best bid, subsequent to a one-unit shock in the participant best bid, for IBM. In principle, the IRF 

corresponds to the 10𝜇s line in Figure 1, Panel A. In Figure 5, the components of the bridged IRF are 

displaced slightly in the vertical dimension to clarify the intervals of overlap. The general features 

of the bridged and regular IRFs are very similar. At longer horizons, however, the bridged IRF is 

slightly lower than detailed. (At 500 seconds, the bridged IRF is 0.641 and the detailed IRF is 

0.647.) 

 Table 9 presents estimates of bridged random-walk volatilities and information shares, 

 for both stocks and each of the three analyses considered in Sections V, VI, and VII. Table 9 

                                                             
(2006) note that in macroeconomic applications, long-term forecasts formed by iterating forecasts 
based on short-term models generally outperform direct long-term forecasts. 
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contains only the highest resolution estimates, corresponding to the 10𝜇𝑠 estimates in Tables 6, 7, 

and 8. The two sets of estimates are not identical, but are very similar.  

 I now consider computational aspects. As a rough indication, both detail and bridged 

analyses were implemented in Matlab using identical levels of parallel processing. (The 

construction of cross-product matrices and IRFs were spread over four processors.) The results for 

the IBM participant/SIP timestamps are indicative. The detail analysis at 10𝜇𝑠 resolution required 

approximately 40 minutes to estimate and 133 minutes to construct the 500-second IRFs. The 

bridged analysis required approximated 20 minutes to estimate the (shorter) VECM specifications 

at resolutions of 100𝑚𝑠, 10𝑚𝑠, 1𝑚𝑠, 100𝜇𝑠, and 10𝜇𝑠, and under 10 seconds to build the bridged 

IRFs. In all, the computational time for the bridged analysis is around 12% of the time required for 

the detail analysis. It is likely that gains would be larger at higher resolutions. 

 In summary, bridging appears to yield close approximations to forecasts constructed 

directly, at substantial computational savings. 

IX. Conclusion 

 Although modern market data are commonly described as high-frequency, they are for 

many purposes better characterized as high-resolution. That is, the precision and accuracy of their 

time stamps allow them to be ordered at microsecond and nanosecond timescales. Determining the 

joint dynamics over extremely short intervals is key to resolving the strategies of agents, such as 

high frequency traders, who can react at these horizons. Another aspect of these strategies, though, 

is the provision of liquidity to agents operating at timescales considerably longer. A human day-

trader might take a few seconds to react; an institutional trader might implement a purchase or sale 

over a day or longer. Estimating a model in natural time that captures short- and long-term 

components of these agents’ actions, however, poses formidable challenges. 

 The analysis is based on standard linear VAR/VECM specifications. These are viewed as 

forecasting models. Due discreteness and other features, they are unlikely to be very representative 

of the data generating process. The analysis relies on two sources of simplification and tractability. 

The first involves coefficient constraints that are tied to timescale, following Corsi (2009). The 

specification allows high resolution at short lags, and lower resolution at longer lags. The second 
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simplification follows from the sparsity of the data, which facilitates the accumulation of least-

squares cross-product matrices using a straightforward approach that involves only the non-zero 

price-change observations. Supplemental results suggest that bridging approaches will yield 

further computational efficiencies. 

 For two stocks (IBM and NVDA), the paper estimates three models of multiple cointegrated 

prices directed at representative problems in the microstructure literature. Each model is 

estimated over progressively finer (higher) levels of resolution, ranging from one second down to 

ten microseconds. Across resolutions, the model estimates behave sensibly. The random-walk 

volatilities, presumably long-term properties of the securities, are essentially unchanged in the 

passage to higher resolutions. Short-term effects, though, are much more clearly distinguished. This 

is particularly apparent in the analysis of information shares. Estimates of these parameters are 

often determined only within lower and upper bounds, and in practice the bounds are frequently 

wide. This is certainly the case for the systems estimated here. At one-second resolution, the 

bounds lie at the extremes of possibility (zero and one-hundred percent). As resolution increases, 

however, the bounds converge dramatically, in most cases. The systems for which the bounds don’t 

collapse are those involving trades and quote revisions that appear to be contemporaneous even at 

resolutions of ten microseconds. Identification of causality in these situations is likely to be more 

reliant on economic analysis than on time stamps. 

 The main alternative to high-resolution natural time specification is event-time modeling, 

wherein the time index is a sequential counter of events. Event-time models in the present 

situations offer mixed results. The broad conclusions regarding information shares are unchanged: 

quotes using participant timestamps are much more informative that those based on SIP 

timestamps; the information shares of listing exchanges are larger than their volume shares; and, 

quotes dominate trades. In view of these similarities and their relative computational simplicity, 

event-time models should probably be preferred for exploratory analysis. They are not, however, 

equivalent to the high-resolution natural-time models. Estimates of information shares differ to an 

extent that may be important in many analyses. Additionally, the min/max bounds of information 

shares are generally wider in the event-time specifications. The correspondence between natural- 

and event-time specifications is worthy of further investigation. 
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 The time stamps on modern market data can potentially identify strategies operating below 

the threshold of cross-market reaction times. For example, competing exchanges, market makers 

and algorithmic traders have long used autoquote algorithms or pegged orders to ensure that their 

bids and offers maintain some desired offset relative to other bids and offers. A buyer on some 

other market might peg her limit price to the bid on the primary listing exchange minus, say, $0.02. 

Near-simultaneous changes in quotes on different venues are often attributed to these strategies. 

They are, however, contingent on one player’s observation of another’s move. If the reaction occurs 

within an interval shorter than the physical limits of transmission, these strategies can be ruled out. 

 A multi-market strategy pursued by a single agent does not need to be reactive. The 

simplest examples involve selective delays in order origination. If Exchange A is 100 microseconds 

distant from Exchange B, a trader on Exchange B who wants to trade “simultaneously” at both 

exchanges can send an order to A, wait 100 microseconds, and then submit to B. This technique, 

applicable to marketable and nonmarketable orders, was implemented in IEX’s THOR system, 

described in the SEC’s order approving IEX’s exchange registration (U.S. Securities and Exchange 

Commission (2016)) and Flash Boys (Lewis (2014)). The models proposed here can potentially 

distinguish single-agent delay-based behaviors from cross-market reactive strategies. 
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Table 1. Resolution and autoregressive coefficient structure 

The autoregressive coefficients follow a step function that is constant within the given range. In the one-
second analysis, the lagged intervals have endpoints located at 1, 2, …, 10 seconds. The coefficient at lag 1 
varies without restriction; the coefficients at lags 2-10 have the same value.  In the 0.1 second (100 ms) 
analysis, the lagged intervals have endpoints located at 0.1, 0.2, …, 10.0 seconds. The coefficient at lag 1 is 
unrestricted; coefficients at lags 2-10 have the same value; coefficients at lags 11-100 have the same value. 

Resolution 

(seconds) Coefficient ranges 

1.0      [1.0] (1.0,10] 

0.1     [0.1] (0.1,1.0] (1.0,10] 

0.01    [0.01] (0.01,0.1] (0.1,1.0] (1.0,10] 

0.001   [0.001] (0.001,0.01] (0.01,0.1] (0.1,1.0] (1.0,10] 

0.0001  [0.0001] (0.0001,0.001] (0.001,0.01] (0.01,0.1] (0.1,1.0] (1.0,10] 

0.00001 [0.00001] (0.00001,0.0001] (0.0001,0.001] (0.001,0.01] (0.01,0.1] (0.1,1.0] (1.0,10] 
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Table 2. Summary statistics for trades and quotes 

The sample is all trade and quote records for IBM and NVIDIA on the daily TAQ file for October 3, 2016, 
between 9:45 and 16:00. 

  Trades  Quotes 

  N Avg. price Avg. size (shares) Avg. size (value)  N 

IBM  22,282 $157.60 82.0 $12,930.10  314,324 

NVDA  41,724 $68.69 117.1 $8,045.87  893,413 
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Table 3. Reporting delays 

The daily TAQ trade and quote records have a participant timestamp that is inserted by the participant’s 
matching engine, and a SIP timestamp that is inserted when the event has been processed by the securities 
information processor, prior to its multicast.  The difference between these timestamps is 𝛿 = 𝑆𝐼𝑃 𝑡𝑖𝑚𝑒 −
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑡𝑖𝑚𝑒, in milliseconds. Panel A summarizes the distribution of 𝛿 by participant for trades; panel 
B, for quotes. 

Panel A. Distribution of 𝛿 for transactions 

    Quantiles  

Symbol Exchange N Min 1% 10% 50% 90% 99% Max 

IBM BX (NASDAQ) 2,250 0.82 0.84 0.88 0.96 1.88 4.01 7.14 

 Bats BYX 1,041 0.45 0.48 0.51 0.56 0.72 2.42 3.95 

 Bats BZX 2,062 0.45 0.48 0.52 0.57 0.71 1.92 4.19 

 EDGA 412 0.48 0.49 0.53 0.58 0.74 2.17 2.52 

 EDGX 1,848 0.46 0.49 0.52 0.57 0.74 3.56 6.47 

 FINRA ADF 4,338 -31.95 1.81 2.51 6.28 22.34 946.18 5,625.47 

 IEX 428 0.53 0.55 0.58 0.62 1.81 4.32 9.11 

 NASDAQ 4,028 0.80 0.83 0.86 0.95 2.24 4.92 30.84 

 NASDAQ PSX 82 0.85 0.85 0.87 0.95 2.20 3.74 3.74 

 NYSE 4,004 0.22 0.24 0.27 0.31 0.48 1.73 4.80 

 NYSE ARCA 1,789 0.16 0.18 0.20 0.24 0.35 1.35 4.04 

 All 22,282 -31.95 0.20 0.28 0.85 6.18 127.02 5,625.47 

NVDA BX (NASDAQ) 1,801 0.19 0.23 0.27 0.35 1.37 3.84 7.89 

 Bats BYX 2,362 0.37 0.42 0.46 0.54 0.85 2.68 181.63 

 Bats BZX 4,972 0.36 0.41 0.46 0.53 0.84 2.86 6.13 

 EDGA 1,703 0.40 0.44 0.48 0.56 1.09 2.83 6.38 

 EDGX 4,731 0.40 0.43 0.47 0.55 0.84 3.37 12.00 

 FINRA ADF 8,684 -16.63 -1.76 1.88 5.63 122.04 1,166.36 11,034.81 

 IEX 413 0.50 0.50 0.54 0.61 2.05 3.92 4.19 

 NASDAQ 11,415 0.16 0.21 0.25 0.33 1.05 4.20 8.28 

 NASDAQ PSX 516 0.21 0.23 0.27 0.34 0.85 3.25 5.07 

 NYSE ARCA 5,056 0.77 0.82 0.86 0.93 1.04 1.50 5.25 

 NYSE MKT 71 0.89 0.89 0.93 1.01 1.20 3.60 3.60 

 All 41,724 -16.63 0.22 0.29 0.58 5.80 216.68 11,034.81 
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Table 3. Reporting delays (continued) 

Panel B. Distribution of 𝛿 for quote updates. 

    Quantiles  

 Exchange N Min 1% 10% 50% 90% 99% Max 

IBM BX (NASDAQ) 35,116 -0.75 0.80 0.83 0.88 2.46 9.27 45.29 

 Bats BYX 37,692 -1.25 0.39 0.41 0.45 1.02 4.83 18.32 

 Bats BZX 38,674 -1.18 0.39 0.41 0.44 0.55 6.44 67.84 

 EDGA 13,284 -1.17 0.40 0.42 0.45 0.62 4.48 19.14 

 EDGX 11,283 -1.56 0.40 0.42 0.45 0.78 6.82 34.46 

 IEX 32,125 -1.66 0.51 0.54 0.60 2.34 6.68 42.43 

 NASDAQ 28,383 -0.74 0.80 0.83 0.89 4.10 16.76 75.16 

 NASDAQ PSX 13,523 -0.76 0.80 0.83 0.87 1.02 6.18 37.48 

 NYSE 83,556 -2.10 0.21 0.23 0.29 2.25 8.14 36.33 

 NYSE ARCA 20,688 -1.69 0.20 0.23 0.27 0.43 3.78 39.51 

 All 314,324 -2.10 0.21 0.25 0.47 1.77 8.24 75.16 

NVDA BX (NASDAQ) 75,268 0.04 0.22 0.26 0.34 0.73 12.05 73.62 

 Bats BYX 114,100 0.21 0.39 0.43 0.51 0.82 8.88 53.47 

 Bats BZX 139,994 0.22 0.39 0.42 0.50 0.89 11.87 77.34 

 EDGA 53,516 0.26 0.40 0.43 0.50 0.82 8.01 48.25 

 EDGX 75,539 0.22 0.40 0.43 0.51 0.87 9.44 52.22 

 IEX 6,696 0.46 0.48 0.52 0.61 1.55 14.09 54.92 

 NASDAQ 190,813 0.07 0.25 0.29 0.39 1.03 7.92 37.43 

 NASDAQ PSX 42,246 0.06 0.25 0.28 0.35 0.59 6.12 39.30 

 NYSE ARCA 166,343 0.67 0.83 0.87 0.94 1.31 11.32 86.17 

 NYSE MKT 28,898 0.82 0.91 0.95 1.00 1.10 2.84 33.35 

 All 893,413 0.04 0.25 0.32 0.51 1.06 9.50 86.17 
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Table 4. Trades and quotes by market center 

The sample is all trade and quote records for IBM and NVIDIA for October 3, 2016, between 9:45 and 16:00. 
Panel A reports summary statistics for trades, including the distribution across exchanges of trade counts 
and total value. “FINRA ADF” refers to FINRA’s Alternative Display Facility, a reporting channel for trades 
that do not take place on exchanges. 

Panel A. Transactions 

 Exchange N Percent Total Value Percent 

IBM BX (NASDAQ) 2,250 10.1 16,237,124 5.6 

 Bats BYX 1,041 4.7 11,195,595 3.9 

 Bats BZX 2,062 9.3 18,703,805 6.5 

 EDGA 412 1.8 4,956,413 1.7 

 EDGX 1,848 8.3 24,483,852 8.5 

 FINRA ADF 4,338 19.5 77,266,592 26.8 

 IEX 428 1.9 7,177,992 2.5 

 NASDAQ 4,028 18.1 45,466,059 15.8 

 NASDAQ PSX 82 0.4 853,433 0.3 

 NYSE 4,004 18.0 59,796,122 20.8 

 NYSE ARCA 1,789 8.0 21,971,478 7.6 

 All 22,282 100.0 288,108,465 100.0 

NVDA BX (NASDAQ) 1,801 4.3 11,411,852 3.4 

 Bats BYX 2,362 5.7 13,691,110 4.1 

 Bats BZX 4,972 11.9 29,725,917 8.9 

 EDGA 1,703 4.1 11,224,610 3.3 

 EDGX 4,731 11.3 33,763,188 10.1 

 FINRA ADF 8,684 20.8 120,015,775 35.8 

 IEX 413 1.0 2,958,065 0.9 

 NASDAQ 11,415 27.4 73,846,144 22.0 

 NASDAQ PSX 516 1.2 3,523,688 1.0 

 NYSE ARCA 5,056 12.1 34,963,303 10.4 

 NYSE MKT 71 0.2 582,066 0.2 

 All 41,724 100.0 335,705,717 100.0 
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Panel B. Quote updates 

 Exchange N Percent 

IBM 

BX (NASDAQ) 35,116 11.2 

Bats BYX 37,692 12.0 

Bats BZX 38,674 12.3 

EDGA 13,284 4.2 

EDGX 11,283 3.6 

IEX 32,125 10.2 

NASDAQ 28,383 9.0 

NASDAQ PSX 13,523 4.3 

NYSE 83,556 26.6 

NYSE ARCA 20,688 6.6 

All 314,324 100.0 

NVDA 

BX (NASDAQ) 75,268 8.4 

Bats BYX 114,100 12.8 

Bats BZX 139,994 15.7 

EDGA 53,516 6.0 

EDGX 75,539 8.5 

IEX 6,696 0.7 

NASDAQ 190,813 21.4 

NASDAQ PSX 42,246 4.7 

NYSE ARCA 166,343 18.6 

NYSE MKT 28,898 3.2 

All 893,413 100.0 
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Table 5. Information shares using participant and SIP timestamps. 

Panel A reports point estimates based on quotes for IBM and NVIDIA, October 3, 2016, between 9:45 and 
16:00. The specification is a four-variable VECM estimated at the indicated resolution. The variables are 
National Best Bids (NBB) and National Best Offers (NBO) constructed using participant exchanges and the 
securities information processors (SIPs). The resolution refers to the interval width. Prices are taken as of 
the end of the interval. Bid and offer prices are dollars per share. The random-walk volatility is scaled as 
dollars per year. Panel B contains summary statistics (means and standard errors) for daily estimates over 
a thirty-trading-day sample. 

Panel A. October 3, 2016 

 Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡} {𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝} 

Min Max Min Max 

IBM 1.0 19.065 0.002 1.000 0.000 0.998 

 0.1 19.154 0.017 0.999 0.001 0.983 

 0.01 19.138 0.142 0.998 0.002 0.858 

 0.001 19.121 0.827 0.998 0.002 0.173 

 0.0001 19.121 0.999 0.999 0.001 0.001 

 0.00001 19.124 0.999 0.999 0.001 0.001 

 Event time  0.987 1.000 0.000 0.013 

NVDA 1.0 12.246 0.000 1.000 0.000 1.000 

 0.1 12.135 0.009 1.000 0.000 0.991 

 0.01 12.068 0.082 1.000 0.000 0.918 

 0.001 12.057 0.685 1.000 0.000 0.315 

 0.0001 12.049 0.997 0.999 0.001 0.003 

 0.00001 12.046 0.999 0.999 0.001 0.001 

 Event time  0.982 0.998 0.002 0.018 

 

Panel B. Means and standard errors of daily estimates (October 3, 2016 to November 11, 2016) 

 Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡} {𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝} 

Min Max Min Max 

IBM 0.00001 
19.824 

(1.031) 

0.997 

(0.001) 

0.997 

(0.001) 

0.003 

(0.001) 

0.003 

(0.001) 

 Event time  
0.988 

(0.001) 

1.000 

(<0.001) 

0.000 

(<0.001) 

0.012 

(0.001) 

NVDA 0.00001 
15.461 

(1.518) 

0.997 

(0.001) 

0.997 

(0.001) 

0.003 

(0.001) 

0.003 

(0.001) 

 Event time  
0.979 

(0.001) 

0.999 

(<0.001) 

0.001 

(<0.001) 

0.021 

(0.001) 
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Table 6. Information shares: primary listing exchange vs. all others 

Panel A reports point estimates based on all quotes for IBM and NVIDIA, October 3, 2016, between 9:45 
and 16:00. The specification is a four-variable VECM estimated at the indicated resolution. The variables 
are the bid and offer on the primary listing exchange (𝐵𝑖𝑑𝐿𝐸𝑋 and 𝐴𝑠𝑘𝐿𝐸𝑋) and the best bid and offer on 
the non-listing exchanges (𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟 and 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟), using participant timestamps. The resolution refers 
to the interval width. Prices are taken as of the end of the interval. Bid and offer prices are dollars per 
share. The random-walk volatility is scaled as dollars per year. Panel B contains summary statistics (means 
and standard errors) for daily estimates over a thirty-trading-day sample. 

Panel A. October 3, 2016 

 

Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝐵𝑖𝑑𝐿𝐸𝑋, 𝐴𝑠𝑘𝐿𝐸𝑋} {𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟, 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟} 

Min Max Min Max 

IBM 1.0 19.187 0.136 0.932 0.068 0.864 

 0.1 19.269 0.215 0.850 0.150 0.785 

 0.01 19.243 0.295 0.792 0.208 0.705 

 0.001 19.218 0.435 0.668 0.332 0.565 

 0.0001 19.127 0.519 0.535 0.465 0.481 

 0.00001 19.135 0.525 0.526 0.474 0.475 

 Event time  0.458 0.555 0.445 0.542 

NVDA 1.0 12.299 0.067 0.914 0.086 0.933 

 0.1 12.147 0.131 0.820 0.180 0.869 

 0.01 12.070 0.173 0.795 0.205 0.827 

 0.001 12.061 0.281 0.717 0.283 0.719 

 0.0001 11.998 0.493 0.560 0.440 0.507 

 0.00001 11.939 0.533 0.539 0.461 0.467 

 Event time  0.472 0.643 0.357 0.528 

Panel B. Means and standard errors of daily estimates (October 3, 2016 to November 11, 2016) 

 Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝐵𝑖𝑑𝐿𝐸𝑋, 𝐴𝑠𝑘𝐿𝐸𝑋} {𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟, 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟} 

Min Max Min Max 

IBM 0.00001 
19.859 

(1.035) 

0.401 

(0.012) 

0.403 

(0.012) 

0.597 

(0.012) 

0.599 

(0.012) 

 Event time  
0.344 

(0.011) 

0.434 

(0.013) 

0.566 

(0.013) 

0.656 

(0.011) 

NVDA 0.00001 
15.301 

(1.509) 

0.535 

(0.010) 

0.542 

(0.010) 

0.458 

(0.010) 

0.465 

(0.010) 

 Event time  
0.495 

(0.012) 

0.628 

(0.015) 

0.372 

(0.015) 

0.505 

(0.012) 
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Table 7. Information shares: quotes, lit trades, and dark trades 

Panel A reports point estimates based on all trades and quotes for IBM and NVIDIA, October 3, 2016, 
between 9:45 and 16:00. The specification is a four-variable VECM estimated at the indicated resolution. 
The variables are the national best bid and offer (𝑁𝐵𝐵 and 𝑁𝐵𝑂), the last recorded price of an execution 
reported by lit exchange (𝑇𝑟𝑎𝑑𝑒𝑠 (𝑙𝑖𝑡)), and the last recorded price of an execution reported on FINRA’s 
ADF (𝑇𝑟𝑎𝑑𝑒𝑠 (𝑑𝑎𝑟𝑘)), constructed using participant timestamps. The resolution refers to the interval 
width. Prices are taken as of the end of the interval. Bid and offer prices are dollars per share. The random-
walk volatility is scaled as dollars per year. Panel B contains summary statistics (means and standard 
errors) for daily estimates over a thirty-trading-day sample. 

Panel A. October 3, 2016 

 

Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝑁𝐵𝐵, 𝑁𝐵𝑂} 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑙𝑖𝑡) 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑑𝑎𝑟𝑘) 

Min Max Min Max Min Max 

IBM 1.0 18.645 0.390 0.979 0.021 0.603 0.000 0.028 
 0.1 18.707 0.479 0.960 0.038 0.515 0.002 0.012 
 0.01 18.706 0.525 0.916 0.081 0.471 0.002 0.006 
 0.001 18.653 0.570 0.794 0.204 0.428 0.002 0.002 
 0.0001 18.551 0.580 0.661 0.337 0.418 0.002 0.002 
 0.00001 18.554 0.581 0.643 0.355 0.416 0.002 0.002 

 Event time  0.533 0.606 0.393 0.465 0.001 0.002 

NVDA 1.0 12.444 0.450 0.982 0.016 0.541 0.001 0.048 

 0.1 12.339 0.580 0.962 0.036 0.416 0.001 0.012 

 0.01 12.296 0.635 0.941 0.058 0.363 0.001 0.004 

 0.001 12.278 0.690 0.881 0.117 0.308 0.001 0.002 

 0.0001 12.214 0.707 0.763 0.235 0.291 0.002 0.002 

 0.00001 12.199 0.708 0.744 0.254 0.289 0.002 0.002 

 Event time  0.674 0.782 0.218 0.326 0.000 0.000 

Panel B. Means and standard errors of daily estimates (October 3, 2016 to November 11, 2016) 

 Resolution  

(seconds) 

Random-walk  

volatility (𝜎𝑤) 

Information share 

{𝑁𝐵𝐵, 𝑁𝐵𝑂} 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑙𝑖𝑡) 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑑𝑎𝑟𝑘) 

Min Max Min Max Min Max 

IBM 0.00001 
19.650 

(1.013) 

0.630 

(0.012) 

0.683 

(0.011) 

0.313 

(0.011) 

0.366 

(0.012) 

0.004 

(0.001) 

0.004 

(0.001) 

 Event time  
0.510 

(0.015) 

0.596 

(0.016) 
0.401 

(0.015) 

0.486 

(0.015) 

0.003 

(0.001) 

0.004 

(0.001) 

NVDA 0.00001 
15.307 

(1.504) 

0.691 

(0.009) 

0.726 

(0.008) 

0.271 

(0.008) 

0.305 

(0.009) 

0.003 

(0.001) 

0.003 

(0.001) 

 Event time  
0.602 

(0.009) 

0.716 

(0.009) 

0.279 

(0.009) 

0.395 

(0.009) 

0.003 

(0.001) 

0.005 

(0.001) 
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Table 8. Bridged information share estimates in a simulated model 

The simulated model is: 

Δ𝑝𝑡 = 𝛾𝐵𝑝𝑡−1 + 𝜙1Δ𝑝𝑡−1 + 𝜙2Δ𝑝𝑡−2 + ⋯ + 𝜙𝐾Δ𝑝𝑡−𝐾 + 𝜖𝑡 , 

where 𝑝𝑡 = [𝑝1𝑡 𝑝2𝑡]′, 𝐵 = [1 −1], 𝛾 = [−0.01 0.02], and 𝜖𝑡~𝑁(0, 𝐼2). The 𝐾 = 100 autoregressive 
coefficient matrices are:  𝜙1 = 0.1𝐼; 𝜙𝑘 = 0.2𝐼 for 𝑘 = 2, … ,10; 𝜙𝑘 = 0.005𝐼 for 𝑘 = 11, … ,100. Based on 
one million simulated observations, three models are estimated: the short model is truncated at 𝐾 = 10; 
the long model also has 𝐾 = 10 lags, but it is applied to prices sampled every ten periods; the short and 
long model corresponds to the correct specification. For each of the three models, the vector moving 
average representation (VMA) is computed through 1,000 periods forward, and I compute the random-
walk variance and bounds on the information shares. In the bridged specification, the VMA is constructed 
by taking the ten-step ahead forecasts from the short model as the starting values for forecasting the long 
model. 

Specification 

Random-walk  

volatility (𝜎𝑤) 

Information shares 

𝑝1 𝑝2 

Min Max Min Max 

Short and long 2.745 0.798 0.798 0.202 0.202 

Short 1.116 0.835 0.839 0.161 0.165 

Long 2.713 0.719 0.840 0.160 0.281 

Bridged 2.827 0.806 0.810 0.190 0.194 
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Table 9. Bridged estimates of random-walk volatilities and information shares 

In each analysis, short-lag VECMs are estimated at resolutions 𝑑 ∈ {10𝜇𝑠, 100𝜇𝑠, 1𝑚𝑠, 10𝑚𝑠, 100𝑚𝑠}. VMA 
representations are constructed from bridged impulse response functions (short-term high-resolution 
forecasts are propagated as starting values for longer-term, lower resolution forecasts). The final VMAs 
have a forecast horizon of 500 seconds and an implied resolution of 10𝜇𝑠. In Panel A, 𝑁𝐵𝐵𝑝𝑎𝑟𝑡 and 
𝑁𝐵𝑂𝑝𝑎𝑟𝑡 are the (national best) bid and offer formed using participant (exchange) time stamps; 
𝑁𝐵𝐵𝑠𝑖𝑝 and 𝑁𝐵𝑂𝑠𝑖𝑝 use timestamps from the Securities Information Processor. In Panel B, 
𝐵𝑖𝑑𝐿𝐸𝑋 and 𝐴𝑠𝑘𝐿𝐸𝑋 are the bid and ask from the primary listing exchange; 𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟 and 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟 are 
the best bid and ask constructed from all other exchanges. In Panel C, 𝑁𝐵𝐵 and 𝑁𝐵𝑂 are the National Best 
Bid and Offer (constructed across all exchanges), 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑙𝑖𝑡) is the last-sale price on any lit exchange, 
𝑇𝑟𝑎𝑑𝑒𝑠 (𝑑𝑎𝑟𝑘) is the last sale price reported under exchange code D. The random-walk volatility is scaled 
as dollars per year. Bounds on information shares are computed over all ordering permutations of the 
innovations. 

Panel A. Participant and SIP timestamps 

 

Random-walk  

volatility (𝜎𝑤) 

Information shares 

 {𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡} {𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝} 

 Min Max Min Max 

IBM 19.68 0.997 0.998 0.002 0.003 

NVDA 11.45 0.971 0.972 0.028 0.029 

Panel B. Primary listing exchange vs. all others 

 

Random-walk  

volatility (𝜎𝑤) 

Information shares 

 {𝐵𝑖𝑑𝐿𝐸𝑋, 𝐴𝑠𝑘𝐿𝐸𝑋} {𝐵𝑖𝑑𝑂𝑡ℎ𝑒𝑟, 𝐴𝑠𝑘𝑂𝑡ℎ𝑒𝑟} 

 Min Max Min Max 

IBM 19.12 0.521 0.523 0.477 0.478 

NVDA 12.02 0.521 0.526 0.474 0.479 

Panel C. Quotes, lit trades and dark trades 

 

Random-walk  

volatility (𝜎𝑤) 

Information shares 

 {𝑁𝐵𝐵, 𝑁𝐵𝑂} 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑙𝑖𝑡) 𝑇𝑟𝑎𝑑𝑒𝑠 (𝑑𝑎𝑟𝑘) 

 Min Max Min Max Min Max 

IBM 18.50 0.587 0.648 0.350 0.411 0.002 0.002 

NVDA 12.27 0.726 0.760 0.234 0.272 0.002 0.002 
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Figure 1. Impulse response functions, participant and SIP timestamps 

The VECM system comprises national best bids (NBBs) and offers (NBOs) constructed from 
participant and SIP timestamps. The system is estimated at six resolutions, ranging from one 
second down to ten microseconds.  IRFs depict the cumulative response in the SIP-based NBB 
following a time-zero one dollar shock to the participant-based NBB. In the figure, the IRF 
estimated at a one-second resolution begins at one second, and similarly for the finer resolutions. 

Panel A. IBM 

 
Panel B. NVDA 
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Figure 2. Impulse response functions, primary listing exchanges vs. others 

The VECM system comprises four price variables: the best bid and offer disseminated by the 
primary listing exchange (NYSE for IBM, NASDAQ for NVDA), and the best bid and offer constructed 
over all other exchanges (that is, ex the primary listing exchange). The system is estimated at six 
resolutions, ranging from one second down to ten microseconds.  IRFs depict the cumulative 
response in the best bid ex primary following a time-zero one dollar shock bid on the primary 
listing exchange. In the figure, the IRF estimated at a one-second resolution begins at one second, 
and similarly for the finer resolutions. 

Panel A. IBM 

 
Panel B. NVDA 
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Figure 3. Impulse response functions, last sale prices and quotes. 

The VECM system comprises four price variables: the national best bid and offer (NBB and NBO), 
the last sale price for an execution on a lit exchange, and the last sale price for a dark execution (an 
execution reported on FINRA’s ADF). The system is estimated at six resolutions, ranging from one 
second down to ten microseconds.  IRFs depict the cumulative response in the NBB following a 
time-zero one-dollar shock to the last sale price on a lit exchange. In the figure, the IRF estimated at 
a one-second resolution begins at one second, and similarly for the finer resolutions. 

Panel A. IBM 

 

Panel B. NVDA 
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Figure 4. Regular and bridged impulse response functions for a simulated model. 

The simulated model is 

Δ𝑝𝑡 = 𝛾𝐵𝑝𝑡−1 + 𝜙1Δ𝑝𝑡−1 + 𝜙2Δ𝑝𝑡−2 + ⋯ + 𝜙𝐾Δ𝑝𝑡−𝐾 + 𝜖𝑡 , 

where 𝑝𝑡 = [𝑝1𝑡 𝑝2𝑡]′, 𝐵 = [1 −1], 𝛾 = [−0.01 0.02], and 𝜖𝑡~𝑁(0, 𝐼2). The 𝐾 = 100 
autoregressive coefficient matrices are:  𝜙1 = 0.1𝐼; 𝜙𝑘 = 0.2𝐼 for 𝑘 = 2, … ,10; 𝜙𝑘 = 0.005𝐼 for 𝑘 =
11, … ,100. Based on one million simulated observations, three models are estimated: the short 
model is truncated at 𝐾 = 10; the long model also has 𝐾 = 10 lags, but it is applied to prices 
sampled every ten periods; the short and long model corresponds to the correct specification. The 
figure depicts the dynamics in 𝑝1 subsequent to a one-unit shock to 𝑝1, for each of the three models. 
The bridged response is computed by taking the ten-step ahead forecast from the short model as 
the starting value for forecasting the long model. 
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Figure 5. The bridged impulse response function for IBM quotes 

The data consist of (national best) bids and offers based on participant and SIP timestamps: 
{𝑁𝐵𝐵𝑝𝑎𝑟𝑡, 𝑁𝐵𝑂𝑝𝑎𝑟𝑡, 𝑁𝐵𝐵𝑠𝑖𝑝, 𝑁𝐵𝑂𝑠𝑖𝑝}. The figure depicts the response in 𝑁𝐵𝐵𝑠𝑖𝑝 subsequent to a 
one-unit shock in 𝑁𝐵𝐵𝑝𝑎𝑟𝑡, constructed by bridging forecasts across different timescales. At each 
resolution 𝑑 ∈ {10𝜇𝑠, 100𝜇𝑠, 1𝑚𝑠, 10𝑚𝑠, 100𝑚𝑠} I estimate a VECM. Beginning at 𝑑 = 10𝜇𝑠, I 
forecast one hundred periods ahead, and use these as starting values for forecasts based on the 𝑑 =
100𝜇𝑠 model, and so forth. The IRF estimated at a ten microsecond resolution begins at one 
microsecond, and similarly for the coarser resolutions. Adjoining forecasts are slightly shifted to 
clarify the periods of overlap. 
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