Mathematics and Statistics Background

Detailed outline

1. Basic analysis and probability theory
 (a) Vector spaces
 (b) Topologies
 (c) Topological vector spaces (Separating Hyperplane Theorem)
 (d) Normed vector spaces
 (e) Measure spaces and probability spaces
 (f) Random variables
 (g) Expectation and the Lebesgue integral
 (h) Conditional expectation
 (i) Radon-Nikodym derivative
 (j) L^p Spaces (Riesz Representation Theorem)

2. Stochastic processes
 (a) Filtrations
 (b) Stochastic processes
 (c) Stopping times
 (d) Martingales
 (e) Brownian motion
 (f) Stochastic integration (Martingale Representation Theorem)
 (g) Itô processes (Itô’s Lemma)
 (h) Quadratic Variation and Covariation
 (i) Girsanov’s Theorem

Readings
This material is taken from the first two chapters of Domenico Cuoco’s lecture notes. For additional references, consult the recommended mathematics and statistics books or Steve Shreve’s lecture notes at http://www.math.cmu.edu/users/shreve/LectureNotes.pdf.
Problems

1. Suppose $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ and let the σ-field F be the set of all subsets of Ω. Define the probability measure P by $P(\omega_1) = P(\omega_2) = P(\omega_3) = P(\omega_4) = P(\omega_5) = 1/5$. Finally, suppose X_1, X_2 are random variables on (Ω, F, P) that take on the following values.

<table>
<thead>
<tr>
<th>state</th>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ω_2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ω_3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ω_4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ω_5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) What is the σ-field F_{X_1} generated by X_1? What is the σ-field F_{X_2} generated by X_2?

(Formally, F_X is defined as

$$F_X = \left\{ X^{-1}(B) \mid B \in B \right\}, \quad (1)$$

where B is the Borel σ-field on \mathbb{R}. That is, F_X is the smallest σ-field with respect to which X is measurable.)

(b) Specify the values of the random variables $E[X_2|F_{X_1}]$ and $E[X_1|F_{X_2}]$.

(c) Suppose X_1 and X_2 are the time 1 and 2 values of a stochastic process X with $X_0 = 1$. Let $\{F_0, F_1, F_2\}$ be the filtration generated by X. What is F_0? F_1? F_2? (In the filtration generated by a stochastic process X, each F_t is the σ-field generated by the complete history of X up to and including time t. That is,

$$F_t = \sigma \{ F_s \mid s \leq t \}, \quad (2)$$

where the notation $\sigma\{\}$, or "σ-closure," or the "σ-field generated by" is necessary because the union of $f_{X_1}, ..., F_{X_2}$ may not by itself represent a valid σ-field.)

2. Suppose the price in yen P of a Japanese stock and the exchange rate X dollars per yen are Itô processes given by

$$dP/P = \mu_P \, dt + \sigma'_P \, dB, \quad (3)$$
$$dX/X = \mu_X \, dt + \sigma'_X \, dB, \quad (4)$$

where B is standard 2-dimensional Brownian motion. Describe the dynamics of the price Y of the stock in dollars.
3. (a) Use the Martingale Representation Theorem and Itô’s Lemma to prove Corollary 1:

Let \(\{B_t\} \) be an \(n \)-dimensional Brownian motion, \(\{\mathcal{F}_t\} \) its natural filtration, and \(\{X_t\} \) a strictly positive local martingale adapted to \(\{\mathcal{F}_t\} \). Then there exists an \(n \)-dimensional process \(\theta \in \mathcal{L}^2 \) such that

\[
X_t = X_0 e^{\int_0^t \theta_s dB_s - \frac{1}{2} \int_0^t |\theta_s|^2 ds}.
\]

(b) Conclude that if \(Z \in L^2(\mathcal{P}) \) is a strictly positive random variable measurable with respect to \(\mathcal{F}_t \), then \(Z \) has the representation (5).

4. Use the results in question 4 above, the lemma stated below, and Levy’s Theorem (Proposition 14 of Domenico Cuoco’s lecture notes) to prove the Girsanov Theorem:

Let \(B_t \) be standard \(n \)-dimensional Brownian motion on \([0, T]\) under the probability measure \(\mathcal{P} \) with \(\{\mathcal{F}_t\} \) its natural filtration and let \(\mathcal{P}^\ast \) be a probability measure equivalent to \(\mathcal{P} \). Then there exists an \(n \)-dimensional process \(\theta \in \mathcal{L}^2 \) s.t.

\[
\frac{d\mathcal{P}^\ast}{d\mathcal{P}} = \exp(-\int_0^T \theta_t dB_t - \frac{1}{2} \int_0^T |\theta_t|^2 dt)
\]

and

\[
B_t^\ast \equiv B_t + \int_0^t \theta_s ds
\]

is standard \(n \)-dimensional Brownian motion on \([0, T]\) under \(\mathcal{P}^\ast \).

Lemma In the setting described above, define \(Z_t \equiv E \left\{ \frac{d\mathcal{P}^\ast}{d\mathcal{P}} \mid \mathcal{F}_t \right\} \), a strictly positive martingale w.r.t \(\{\mathcal{F}_t\} \). If \(Y \) is an Itô process and \(ZY \) is a \(\mathcal{P} \)-local martingale, then \(Y \) is \(\mathcal{P}^\ast \)-local martingale.