Mortgage-Backed Securities

Prof. Ian Giddy
Stern School of Business
New York University

Mortgages and MBS

- Mortgage Loans
- Pass-throughs and Prepayments
- CMOs
- Analysis of MBS Pricing and Convexity
Structure of the US MBS Market

Mortgage Loan
Bank (mortgage originator) makes a whole loan
Ancillary: brokers, servicers, insurers

Mortgage Pass-Through
FNMA or GMAC (conduit) pools mortgage loans with similar characteristics

CMO or REMIC
Takes a mortgage pool and makes the cash flows more predictable by assigning priority of claims to the cash flows

MBS Portfolio
Institutional investor evaluates risk/return behavior of mortgage-backed securities through option-adjusted price and spread analysis

Mortgage Strips
Interest-Only and Principal-Only

US Mortgage-Backed Securities

AGENCY PASS-THROUGHS
INTEREST
PRINCIPAL
PREPAYMENT
GRANTOR TRUST STRUCTURE

PRIVATE-LABEL PASS-THROUGHS
INTEREST
PRINCIPAL
PREPAYMENT
GRANTOR TRUST STRUCTURE

Credit enhancement:
- Corp g’tee
- L/C
- Insurance (FSA)
- Senior/sub debt
Mortgage-Backed Securities

Mortgage-backed securities are prepayable, so one cannot measure returns or values easily.

They tend to pay down early when rates fall, and later when rates rise.
Mortgage Prepayments

Complexity of the option -

- **Systematic risk:** exercise of the interest rate option
- **Unsystematic risk:** reasons unrelated to mortgage interest rates (e.g., demographic)

Mortgage Pool Prepayment Conventions

Traditional method is to forecast prepayments by adjusting the PSA (Public Securities Association) benchmark of a prepayment rate that reaches 6% a year for 30 year mortgages.

Annual prepayment rate (CPR):

100% PSA:
- If $t \leq 30$, $CPR = 6% \times t / 30$
- If $t > 30$, $CPR = 6$

170% PSA:
- If $t \leq 30$, $CPR = 170% \times [6% \times t / 30]$
- If $t > 30$, $CPR = 170% \times [6%]$

Monthly prepayment rate (SMM):

SMM = $[1 - (1 - CPR)] / 12$

Prepayment amount in dollars:

$= (\text{Beginning Principal Balance} - \text{Scheduled Principal Repayment}) \times \text{SMM}$
Prepayment Assignment

- Consider a $100,000 10-year, 9% mortgage loan, with monthly equal payments.
- Make the following calculations, using a computer spreadsheet or financial calculator:
 1. What are the scheduled monthly payments?
 2. After 1 month and 3 months,
 - What is the CPR and SMM, assuming 200% PSA?
 - What is scheduled principal payment?
 - If it pays down at 200% PSA, what is the prepayment amount?
 - What is the remaining principal balance?

CMOs and Strips

The technique:
- Allocate cash flows (interest & principal) of MBS to mitigate prepayment risk
- Pay different returns based on risk
- The sum of the part should be worth more than the whole alone.

Example: MDC Series J CMO with underlying pool WAC 9.5%, 297 months final maturity
CMOs and Strips

- First.priority classes
- Z-class: last to be paid off
- Floating/inverse floating CMOs
- Planned Amortization Class bonds (PACs) and TACs
- Companions with priority schedules (PAC IIs)
- VADM bonds (use early principal and interest to pay priority bondholders)
- CMO residuals (collateral interest - CMO interest)
- IOs and POs

The Negative Convexity of MBS

Securities backed by fixed-rate mortgages have "negative convexity." This refers to the fact that when interest rates rise, the MBS behave like long-term bonds (their prices fall steeply); but when rates fall, their prices rise slowly or not at all.

Price-yield curve of 20 year bond callable in 3 years
Convexity of Callables

Mortgage-backed securities and other callable bonds may have negative convexity which cushions a bond’s price rise and accelerates its fall!

<table>
<thead>
<tr>
<th>PRICE</th>
<th>YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

MBS:

Fannie Mae REMIC Pass-Throughs

- What are the underlying mortgage pools?
- Look at different asset groups:
- Yields on different classes
- Price risks on each class
- What do the seller & servicer gain?

Group work
Bond Valuation
Duration and Convexity

Bond Valuation

The formula for a bond's price is

\[B_0 = Ix(PVIFA_{k,n}) + Mx(PVIF_{n}) \]

\[B_0 = \sum_{t=1}^{n} \frac{I}{(1+k)^t} + \frac{M}{(1+k)^n} \]
Treasury Notes and Bonds as quoted in the Wall Street Journal

<table>
<thead>
<tr>
<th>Rate</th>
<th>Maturity, Mo/Yr</th>
<th>Bid Asked</th>
<th>Ask Yld.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Dec 97</td>
<td>99:29 99:31</td>
<td>6.01</td>
</tr>
</tbody>
</table>

- When US Government bonds are stripped, the coupons and principal are separated out and sold as individual zero-coupon instruments.
- Investment banks create Strips when the total can be sold for more than the cost of the bond.

Price Risk of Treasuries

Treasuries differ:
- Liquidity - traders quote wider bid-ask spreads for illiquid bonds
- Duration - sensitivity of price to a change in interest rates - is based on the bond’s coupon levels and maturity date (low duration means less risky)
- Convexity - measures how duration changes with a change in rates (high convexity is desirable)
The Price-Yield Relationship

Bond prices and interest rates have an inverse relationship:

- Selling at a discount is when a bond sells for less than its par value (i.e., the quote is <100)
- Selling at premium is when a bond sells for more than its par value (i.e., the quote is >100)
Maturity

In general, the longer the maturity, the more sensitive is a bond's price to interest-rate changes, other things being equal:

<table>
<thead>
<tr>
<th>Price</th>
<th>Required yield</th>
<th>9%, 5 year</th>
<th>9%, 25 year</th>
<th>8%</th>
<th>104.0554</th>
<th>110.7510</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9%, 5 year</td>
<td>9%, 25 year</td>
<td>9%</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>9%</td>
<td>10%</td>
<td>96.1391</td>
<td>90.8720</td>
</tr>
</tbody>
</table>

The Coupon Effect...

But three bonds with the same maturity can have very different sensitivities, depending on their coupon levels:

<table>
<thead>
<tr>
<th>Price</th>
<th>Required yield</th>
<th>9%, 5 year</th>
<th>6%, 5 year</th>
<th>0%, 5 year</th>
<th>8%</th>
<th>104.05</th>
<th>91.88</th>
<th>67.56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9%, 5 year</td>
<td>6%, 5 year</td>
<td>0%, 5 year</td>
<td>9%</td>
<td>100.00</td>
<td>88.13</td>
<td>64.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>6%</td>
<td>0%</td>
<td>10%</td>
<td>96.13</td>
<td>84.56</td>
<td>61.39</td>
</tr>
</tbody>
</table>
Duration

Duration measures the % price change for a given change in yield:

![Graph showing the relationship between price and yield with a downward sloping line indicating the price change for a given rise in yield.]

The steeper the line, the more the price falls for a given rise in yield.

Greater Duration, Greater Risk

Duration is measured as the PV-weighted average life, so low-coupon bonds have greater duration.

![Graph showing three lines representing different bonds (9% bond, 6% bond, 0% bond) and their respective price changes at different yields.]

Copyright ©1999 Ian H. Giddy

Mortgage-Backed Securities
Calculating Duration:
MacCauley and Modified

\[D_{MAC} = \sum_{t=1}^{n} \frac{tCF_t}{(1 + r)^t} \]

\[D_{MOD} = \% \Delta P = \frac{dP}{P} = -\frac{D}{(1 + r)} \]

Assignment

For a 2-year, semiannual bond with a coupon rate of 10% and a yield of 8%:

- Find the price sensitivity for a 10bp rise and fall of the yield
- Find the price sensitivity for a 100bp rise and fall of the yield
- Find the duration.
Duration: An Excel Spreadsheet

<table>
<thead>
<tr>
<th>Yield</th>
<th>8.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond A</td>
<td></td>
</tr>
<tr>
<td>Time (year)</td>
<td>0.5</td>
</tr>
<tr>
<td>Cash-Flows</td>
<td>5</td>
</tr>
<tr>
<td>PV of CFs</td>
<td>4.80769</td>
</tr>
<tr>
<td>Price</td>
<td>103.63</td>
</tr>
<tr>
<td>Weighted CFs</td>
<td>5</td>
</tr>
<tr>
<td>PV of weighted CFs</td>
<td>4.80769</td>
</tr>
<tr>
<td>Sum of weight. CFs</td>
<td>386.406</td>
</tr>
<tr>
<td>Semiannual duration</td>
<td>3.72871</td>
</tr>
<tr>
<td>Macaulay duration</td>
<td>1.86436</td>
</tr>
<tr>
<td>Modified</td>
<td>1.72626</td>
</tr>
</tbody>
</table>

Bond Price Changes: Actual vs. Duration-Based

There's an error in duration-based estimation, because duration is linear.
Bond Price Changes: Actual vs. Duration-Based

There’s an error in duration-based estimation, because duration is linear.

![Graph showing actual price vs. duration-based price with an error indicator.]

Convexity

Convexity, or curvature, helps correct duration’s mispricing. Because duration itself changes, we need a measure of the price change due to a change in duration. This is the second derivative of the price change, annualized and divided by the price:

\[
CONV = \left[\frac{mC}{y} \left(1 - \frac{1}{1+y} \right) - \frac{mCn}{y} \frac{n(n+1)(100 - C/y)}{n+2} \right]^{1/2} \frac{1}{P}
\]

where \(C\) is the coupon, \(m\) the frequency, \(n\) the maturity and \(n\) the yield.
Convexity

<table>
<thead>
<tr>
<th>Yield</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond A</td>
<td></td>
</tr>
<tr>
<td>Time (year)</td>
<td>0.5</td>
</tr>
<tr>
<td>Cash-Flows</td>
<td>4</td>
</tr>
<tr>
<td>PV of CFs</td>
<td>3.84615</td>
</tr>
<tr>
<td>Price</td>
<td>100</td>
</tr>
<tr>
<td>CFs.t.(t+1)</td>
<td>8</td>
</tr>
<tr>
<td>Above/(1+y)^(t+2)</td>
<td>7.11197</td>
</tr>
<tr>
<td>Second Derivative</td>
<td>1710.93</td>
</tr>
<tr>
<td>Semiannual Convexity</td>
<td>17.1093</td>
</tr>
<tr>
<td>convexity (years)</td>
<td>4.27733</td>
</tr>
</tbody>
</table>

Convexity: The Change in Duration

The percentage price change in a bond can be approximated using both duration and convexity.

![Diagram showing the relationship between price, yield, and convexity](image)
An Example

<table>
<thead>
<tr>
<th>BOND A</th>
<th>BOND B</th>
<th>APPROXIMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupon</td>
<td>10.00%</td>
<td>Coupon</td>
</tr>
<tr>
<td>Face value</td>
<td>100</td>
<td>Face value</td>
</tr>
<tr>
<td>Frequency</td>
<td>2</td>
<td>Frequency</td>
</tr>
<tr>
<td>Maturity</td>
<td>2</td>
<td>Maturity</td>
</tr>
<tr>
<td>Yield</td>
<td>7.90%</td>
<td>Yield</td>
</tr>
<tr>
<td>Price</td>
<td>103.816</td>
<td>Price</td>
</tr>
<tr>
<td>Macaulay Dur</td>
<td>1.864</td>
<td>Macaulay Dur</td>
</tr>
<tr>
<td>Modified Dur</td>
<td>1.794</td>
<td>Modified Dur</td>
</tr>
<tr>
<td>Dollar Dur</td>
<td>186.209</td>
<td>Dollar Dur</td>
</tr>
<tr>
<td>Convexity</td>
<td>437.122</td>
<td>Convexity</td>
</tr>
<tr>
<td>Dollar Conv</td>
<td>4.211</td>
<td>Dollar Conv</td>
</tr>
</tbody>
</table>

Positive convexity is desirable, because it cushions a bond's price fall and accelerates its rise.
Convexity of Callables

Mortgage-backed securities and other callable bonds may have negative convexity which cushions a bond’s price rise and accelerates its fall!

<table>
<thead>
<tr>
<th>PRICE</th>
<th>YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

MBS: Fannie Mae

- What is the underlying mortgage pool?
- Look at different classes:
- Who is repaid when
- Yields on different classes
- Price risks on each class

Group work
Case Study: Dah Sing

- What is the underlying mortgage pool?
- Who plays what role in the deal?
- Sketch the relationships and flows between the parties
- Why did it make sense for Dah Sing Bank?

Group work

Case Study: Harbour City

- What is the underlying mortgage pool?
- Who plays what role in the deal?
- Sketch the relationships and flows between the parties
- Why did it make sense for the bank?

Group work