Suppose we are testing a simple null hypothesis $H_0: \theta = \theta'$ against a simple alternative $H_1: \theta = \theta''$, where θ is the parameter of interest, and θ', θ'' are particular values of θ. We are given a random sample (X_1, \ldots, X_n) which are iid, each with the p.d.f. $f(x; \theta)$.

A p.d.f. for a random variable X, as defined by Hogg and Craig, p. 39, is either the probability density function (if X is a continuous random variable) or the probability mass function $f(x) = Pr(X = x)$ (if X is a discrete random variable). This definition is not the standard one, however, as the term p.d.f.
is usually reserved for the density of a continuous random variable. Also note that Hogg and Craig are assuming that X is either discrete or continuous, even though there are other possibilities.

We are going to reject H_0 if $(X_1, \ldots, X_n) \in C$, where C is a region of the n-dimensional sample space called the \textbf{critical region}. This specifies a test. We say that the critical region C has \textbf{size} α if the probability of a Type I error is α:

$$Pr[(X_1, \ldots, X_n) \in C ; H_0] = \alpha.$$

We call C a \textbf{best critical region} of size α if it has size α, and

$$Pr[(X_1, \ldots, X_n) \in C ; H_1] \geq Pr[(X_1, \ldots, X_n) \in A ; H_1]$$
for every subset A of the sample space for which

$$Pr [(X_1, \ldots, X_n) \in A ; H_0] = \alpha.$$ Thus, the power

of the test associated with the best critical region C

is at least as great as the power of the test associ-
ated with any other critical region A of size α.

- The Neyman-Pearson Lemma provides us with a

way of finding a best critical region.

The joint p.d.f. of X_1, \ldots, X_n, evaluated at the

observed values x_1, \ldots, x_n is called the likelihood function,

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta).$$

We often think of $L(\theta)$ as a function of θ alone,
although it clearly depends on the data as well.

Define the **likelihood ratio** as $L(\theta')/L(\theta'')$. Informally, we can think of this as measuring the plausibility of H_0 relative to H_1. Therefore, if the likelihood ratio is sufficiently small, we might be inclined to reject H_0. Example 1, p. 396 of Hogg and Craig shows that for a binomial random variable with $n = 5$, the best critical region for testing a simple null versus a simple alternative involving the probability θ of success is the one for which $L(\theta')/L(\theta'') \leq k$, where k is some constant chosen to ensure that the test has level α. The Neyman-Pearson Lemma asserts that, in general a best criti-
A critical region can be found by finding the n-dimensional points in the sample space for which the likelihood ratio is smaller than some constant.

The Neyman-Pearson Lemma: If $k > 0$ and C is a subset of the sample space such that

$$L(\theta')/L(\theta'') \leq k \quad \text{for all } (x_1, \ldots, x_n) \in C \quad (a)$$

$$L(\theta')/L(\theta'') \geq k \quad \text{for all } (x_1, \ldots, x_n) \in C^* \quad (b)$$

$$\alpha = Pr [(X_1, X_2, \ldots, X_n) \in C ; H_0] \quad (c)$$

where C^* is the complement of C, then C is a best critical region of size α for testing the simple hypothesis $H_0 : \theta = \theta'$ against the alternative simple hypothesis $H_1 : \theta = \theta''$.
Proof: Suppose for simplicity that the random variables X_1, \ldots, X_n are continuous. (If they were discrete, the proof would be the same, except that integrals would be replaced by sums). Let $X = (X_1, \ldots, X_n)$. For any region R of n-dimensional space, we will denote the probability that $X \in R$ by $\int_{R} L(\theta)$, where theta is the true value of the parameter. The full notation, omitted to save space, would be

$$Pr [X \in R ; \theta] = \int_{R} \ldots \int_{R} L(\theta ; x_1, \ldots, x_n) \, dx_1 \ldots dx_n.$$

We need to prove that if A is another critical region of size α, then the power of the test associated with C is at least as great as the power of the test
associated with A, or in the present notation, that

$$\int_A L(\theta'') \leq \int_C L(\theta'') \quad \text{.}$$

(1)

Suppose $X \in A^* \cap C$. Then $X \in C$, so by (a),

$$\int_{A^* \cap C} L(\theta'') \geq \frac{1}{k} \int_{A^* \cap C} L(\theta') \quad \text{.}$$

(2)

Next, suppose $X \in A \cap C^*$. Then $X \in C^*$, so by (b),

$$\int_{A \cap C^*} L(\theta'') \leq \frac{1}{k} \int_{A \cap C^*} L(\theta') \quad \text{.}$$

(3)

We now establish (1), thereby completing the proof.

$$\int_A L(\theta'') = \left[\int_{A \cap C} L(\theta'') \right] + \int_{A \cap C^*} L(\theta'')$$

$$= \left[\int_C L(\theta'') - \int_{A^* \cap C} L(\theta'') \right] + \int_{A \cap C^*} L(\theta'')$$
\[
\leq \int_{C} L(\theta'') - \frac{1}{k} \int_{A^{*} \cap C} L(\theta') + \frac{1}{k} \int_{A \cap C^{*}} L(\theta') \quad (\text{See (2),(3)})
\]

\[
\left[-\frac{1}{k} \int_{A \cap C} L(\theta') + \frac{1}{k} \int_{A \cap C} L(\theta') \right] \quad (\text{Add Zero})
\]

\[
= \int_{C} L(\theta'') - \frac{1}{k} \int_{C} L(\theta') + \frac{1}{k} \int_{A} L(\theta') \quad (\text{Collect Terms})
\]

\[
= \int_{C} L(\theta'') - \frac{\alpha}{k} + \frac{\alpha}{k}
\]

(Since both \(C\) and \(A\) have size \(\alpha\))

\[
= \int_{C} L(\theta'')
\]
Eg: Suppose X_1, \ldots, X_n are iid $N(\theta, 1)$, and we want to test $H_0: \theta = \theta'$ versus $H_1: \theta = \theta''$, where $\theta'' > \theta'$. According to the z-test, we should reject H_0 if $Z = \sqrt{n} (\bar{X} - \theta')$ is large, or equivalently if \bar{X} is large. We can now use the Neyman-Pearson Lemma to show that the z-test is best. The likelihood function is

$$L(\theta) = (2\pi)^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2 \right\}.$$

According to the Neyman-Pearson Lemma, a best critical region is given by the set of (x_1, \ldots, x_n) such that $L(\theta')/L(\theta'') \leq k_1$, or equivalently, such that $\frac{1}{n} \log \left[L(\theta'')/L(\theta') \right] \geq k_2$. But
\[
\frac{1}{n} \log \left[\frac{L(\theta'')}{L(\theta')} \right] = \frac{1}{n} \sum_{i=1}^{n} \left[(x_i - \theta')^2/2 - (x_i - \theta'')^2/2 \right]
\]

\[
= \frac{1}{2n} \sum_{i=1}^{n} \left[(x_i^2 - 2\theta'x_i + \theta'^2) - (x_i^2 - 2\theta''x_i + \theta''^2) \right]
\]

\[
= \frac{1}{2n} \sum_{i=1}^{n} [2(\theta'' - \theta') x_i + \theta'^2 - \theta''^2]
\]

\[
=(\theta'' - \theta') \bar{x} + \frac{1}{2} [\theta'^2 - \theta''^2] .
\]

So the best test rejects \(H_0 \) when \(\bar{x} \geq k \), where \(k \) is a constant. But this is exactly the form of the rejection region for the \(z \)-test. Therefore, the \(z \)-test is best.