2: CONFIDENCE INTERVALS FOR THE MEAN; UNKNOWN VARIANCE

Now, we suppose that X_1, \ldots, X_n are iid with unknown mean μ and unknown variance σ^2. Clearly, we will now have to estimate σ^2 from the available data. The most commonly-used estimator of σ^2 is the sample variance,

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 .$$

The reason for using the $n-1$ in the denominator is that this makes S_x^2 an unbiased estimator of σ^2. In other words, $E[S_x^2] = \sigma^2$. We will prove this later. A proof in the normal case follows from Section 4.8 of Hogg & Craig.
Note: Hogg and Craig use a denominator of n in their S^2. We, most textbooks, and most practitioners, however, use $n-1$. To minimize confusion, we will try for now to avoid using the symbol S^2.

- **Question:** What would happen if we used S_x in place of σ in the formula for the CI?

- **Answer:** It depends on whether the sample size is "large" or not.
Large-Sample Confidence Interval;

Population Not Necessarily Normal

Theorem: The interval \(\bar{X} \pm z_{\alpha/2} \frac{S_x}{\sqrt{n}} \) is an asymptotic level \(1 - \alpha \) CI for \(\mu \).

In other words, when the sample size is large, we can use \(S_x \) in place of the unknown \(\sigma \), and the CI will still work.

Proof: It can be shown that \(S_x^2 \) converges in probability to \(\sigma^2 \). In other words,

\[
\lim_{n \to \infty} Pr (|S_x^2 - \sigma^2| > \varepsilon) \to 0 \text{ for any } \varepsilon > 0.
\]

As a result, the distribution of
\[
\frac{X - \mu}{S_x/\sqrt{n}}
\]

converges to the standard normal distribution. Similarly to the proof from the previous handout, we get

\[
Pr(\text{CI Contains } \mu) = Pr\left(-z_{\alpha/2} < \frac{X - \mu}{S_x/\sqrt{n}} < z_{\alpha/2}\right) \to 1 - \alpha.
\]

Small-Sample Confidence Interval;

Normal Population

- If the sample size is small (the usual guideline is \(n \leq 30\)), and \(\sigma\) is unknown, then to assure the validity of the CI we will present here, we must assume that the population distribution is normal. This assumption is hard to check in small samples!
The CI is $\bar{X} \pm t_{\alpha/2} \frac{S_x}{\sqrt{n}}$. ($t_{\alpha/2}$ is defined below.)

The Basics of t Distributions

When n is small, the quantity $t=\frac{\bar{X} - \mu}{S_x/\sqrt{n}}$ does not have a normal distribution, even when the population is normal.

Instead, t has a "Student’s t distribution with $n-1$ degrees of freedom".

There is a different t distribution for each value of the degrees of freedom, ν.

The quantity $t_{\alpha/2}$ denotes the t–value such that the
area to its right under the Student’s t distribution (with $\nu = n - 1$) is $\alpha/2$. Note that we use $\nu = n - 1$, even though the sample size is n. Values of t_α are listed in Table 2, Page 599 of Jobson.

- Note that the last row of Table 2 is denoted by "∞". For practical purposes, any value of ν beyond 29 is usually considered "infinite". (Most tables stop at $\nu = 29$. Jobson’s table is somewhat better, since he also has entries for $\nu = 30, 40, 50, 60, \text{and } 120$.) In this case, the corresponding t distribution is essentially identical to the standard normal distribution. Here, it doesn’t matter whether we use the CI

$$\bar{X} \pm t_{\alpha/2} \frac{S_x}{\sqrt{n}} \text{ or } \bar{X} \pm z_{\alpha/2} \frac{S_x}{\sqrt{n}}$$

since they will be
almost the same. Since t is asymptotically standard normal, the t_α values given in the "∞" row of Table 2 are identical to the z_α values defined earlier.

- On the other hand, if $\nu \leq 29$ the t distribution has "longer tails" (i.e., contains more outliers) than the normal distribution, and it is important to use the t–values of Table 2, assuming that σ is unknown. Here, the CI based on $t_{\alpha/2}$ will be wider than the (incorrect) one based on $z_{\alpha/2}$.

(Why does this happen, and why does it make sense?)

Eg 1: A random sample of 8 "Quarter Pounders" yields a mean weight of $\bar{x} = .2$ pounds, with a
sample standard deviation of $s_x = .07$ pounds. Construct a 95% CI for the unknown population mean weight for all "Quarter Pounders".

Background: Definitions of χ^2 and t distributions

As in Section 1.3.3 of Jobson, we define the χ^2 distribution with ν degrees of freedom to be the distribution of the random variable $\chi_\nu^2 = \sum_{i=1}^{\nu} Z_i^2$, where Z_1, \ldots, Z_ν are iid standard normal. The distribution is positive valued and is skewed to the right. The mean and variance are $E[\chi_\nu^2] = \nu$, $\text{var}[\chi_\nu^2] = 2\nu$.

If X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$, then it can be shown that $(n-1)S_x^2/\sigma^2$ has a χ_{n-1}^2 distribution.
Therefore, $S_x^2 \sim \sigma^2 \chi_{n-1}^2/(n-1)$, and we find that
$E[S_x^2] = \sigma^2$, so that S_x^2 is unbiased for σ^2.

- The random variable

$$\frac{Z}{\sqrt{\chi^2/\nu}}$$

is said to have a *t distribution with v degrees of freedom* if Z is standard normal and χ^2_ν is independent of Z and has a χ^2_ν distribution.

Establishing the Small-Sample CI

Theorem: If X_1, \ldots, X_n are *iid* $N(\mu, \sigma^2)$, then

the interval $\bar{X} \pm t_{\alpha/2} \frac{S_x}{\sqrt{n}}$ is a level $1 - \alpha$ CI for μ.
Proof: It can be shown that \bar{X} and S^2_x are independent. (We will prove this later).

Define $Z = \sqrt{n} \frac{(\bar{X} - \mu)}{\sigma}$, which is standard normal.

Define $\chi^2_{n-1} = (n-1)S^2_x/\sigma^2$, which has a χ^2_{n-1} distribution. Define

$$t = \frac{Z}{\sqrt{\chi^2_{n-1}/(n-1)}} = \sqrt{n} \frac{(\bar{X} - \mu)}{S_x} = \frac{\bar{X} - \mu}{S_x / \sqrt{n}}.$$

By its definition, t has a t distribution with $n-1$ degrees of freedom. Therefore, similarly to the earlier proofs,

$$Pr (\text{CI Contains } \mu) = Pr (-t_{\alpha/2} < \frac{\bar{X} - \mu}{S_x / \sqrt{n}} < t_{\alpha/2}) = 1 - \alpha.$$