18: MODEL SELECTION

It is important to remember that the multiple
linear regression model is, at best, just an approxi-
mation to the truth. It will almost never hold
exactly. Even if it did hold exactly for some set of
explanatory variables, we can never be sure that we
have found the right set. In model selection, the
Idea is to find the smallest set of variables which

provides an adequate description of the data.

Why isn't it a good idea to just put every vari-
able we can think of into the model? After dl,
shouldn't we use dl the "information" we have?

Unfortunately, some of this information is highly
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redundant. In the housing example, it would be a
mistake to include both the house size in sguare
feet and the house size in sguare meters, as the
second variable gives us no new information what-
soever. Furthermore, it might not be a good idea to
Include both the house size and the lot size, espe-
cialy if these variables are deemed to be highly

correl ated.

Another problem is that even pure "noise" will
start to look like signal if we examine it carefully
enough. For example, suppose we regress the price
of gold (y) on the price of silver (x4), the world’s

whale population (x,), and the number of rainy
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days in New York City (x3), for each of the past 25

years. Presumably, X, and X3 are of no use in
predicting y. However, a model with all three vari-
ables will produce a larger R? than the model with
just x;. (Why?) This is one reason why it is often
ridiculous to think of R as measuring the propor-
tion of "explained" variation. It is clear, then, that
the model with the largest R? may not be the best

model to use.

Would it really hurt us to have the "garbage"
variables x, and X3z in the model above? The
answer is often yes, because the coefficient of x;

may be adversely affected, and also because our
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ability to predict y may actually deteriorate if we

Include the extraneous variables. With regard to X1,
there is another issue. Some theories hold that the
prices of gold and silver are inversely related.
Therefore, maybe we should use the reciprocal of
the silver price instead of x4. The choice of the
appropriate transformation of the explanatory vari-

ables is also part of the problem of model selection.

All explanatory variables that are available to us
are called candidate variables. Some of these vari-
ables may be transformations of others. For exam-
ple, we could have x;=3P, X, and X3 as above,

X4=1USP, Xx5=10g(SP), where SP is the price of
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silver. We want to decide which subset of these
candidate variables should be used in our multiple
regression model. Unfortunately, if there are K
candidate variables, then there are 2% possible sub-
set models. This grows very fast with K, so we
may not be able to look at al subsets. The idea of
stepwise methods (see Jobson, Section 4.2.1) is to
avoid looking at all subsets. Whether or not we
have the computing power, and energy, to look at
all subsets, we will need some measure of the qual-
ity of a given candidate model (i.e., using a particu-
lar subset of the candidate variables). We have

aready seen that R? is not an adeguate measure,
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essentially because it does not penalize the mode
for having too many parameters. Neither does the

overal F -statistic.

Using the t-ratios for model selection can lead to
contradictory results, depending on which candidate
model is used. For the housing example, age was
not significant (p =.8) in the full model, but was
significant (p =.047) when it was the only variable

used.

For each candidate model, we would like to con-
struct a numerical measure of quality which is
directly comparable to the quality measures obtained

for the other models, which automatically takes into
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account the fact that different models will often
have different numbers of explanatory variables, and
which automatically trades off our conflicting objec-
tives to get a reasonably good description of the
data (e.g., make SSE small), without using too
many variables. We will consider two different
Information criteria for this purpose. The criteria
are called FPE (Final Prediction Error), and AIC.
(Corrected Akake Information Criterion). Both
Involve evaluating the criterion for the various can-
didate models, and then choosing the model which

minimizes the criterion.
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The FPE Criterion

Consider the candidate model y =X[3+u, where
X is nx(p+1) and the u; are iid with mean zero
and variance 62. We do not need to assume that
the u; are normal. Next, we suppose that this candi-
date model is correct. This assumption will usually
be wrong, but it allows us to derive our selection
criterion! Using the data y, we obtain the predicted
values, y.

Imagine a vector of future observations,
ym =XB+u", where the u" are iid with mean
zero, variance 62, and are independent of the u.

The sum of squared prediction errors corresponding



to the predictor y is

PE = lyF —y112=[IXB+uF —=Xb|I?
=1IX(B-b)+u" 112
=1IX(B=b)I1%+ luF 117+ 2uFYX(B-Db) .

The expectation of PE is called the Final Pred-
iction Error. Since since u™ and b are indepen-

dent, the final prediction error is given by

E[PE]=E[(B-b)X’X(B-b)]+nc?

—Gu(p+1) +NGy; —Gu(n+p+1)
which can be estimated without bias by

n+p+1
n-p-1

FPE =s?(n+p+1)=SSE
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Note that FPE automatically compromises the

fidelity to the data and "parsimony"”. The fidelity is
measured by SSE, which tends to decrease with p.
The other term, (n+p+1)/(n—p—1), which increases
with p, constitutes a penalty term designed to

prevent us from using too many parameters.

To implement this method, we get the residud
sum of squares SSE for each candidate model, and
then calculate FPE. We select the model which

gives the smallest value of FPE.

The Corrected Akaike Information Criterion, AIC¢c

Unfortunately, in small samples, or whenever the

total number of candidate models is large, FPE will
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often select too many variables. Another method,
which works better in small samples (and just as
well as FPE in large samples) is the corrected

Akake Information Criterion,

2(p+2)
AlC~ =log(SSE) + —————=

where log denotes the natural logarithm. The model
selected by minimizing AlIC will often have fewer
variables than the one selected by FPE. To see
why, note that the model which minimizes FPE

will also minimize log (FPE), given by
log(FPE) =10og(SSE) + log((n+p+1)/(n—p-1)) .

Some caculus reveals that the penaty term for

AIC. increases much faster as a function of p than
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the penalty term for log (FPE), particularly when p

Is large.
An Example

We consider a data set on the utilization of trees
for the production of matches. For each of 1790
trees, the "expected utilization" was measured (as a
percentage of the volume), along with the diameter
(in inches) at breast height. The data were then
grouped according to 16 classes, according to diam-
eter. Our 16 data points consist of x, the diameter
representing the class, and y, the average utilization
for the trees in the given class. We want to under-

stand how utilization depends on diameter.



- 13 -
A scatterplot reveals that the relationship

between x and y is not linear. Although utilization

Increases at first, it seems to eventually level off.

We will try fitting polynomials of degrees 1-7 to
the data. To fit a polynomial of degree p, we sim-
ply use the explanatory variables xq, ..., X,
where x; =xJ. (Of course, we aso include x, a

column of ones.) The resulting polynomia regres-

sion model is
y=Bo+Bix+ -+ +BpxP+u .
This is a linear regression model, since it is linear

in the parameters, even though E[yIx] is not a

linear function of the diameter, x.
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We will also try an exponential model, of form
y=o+Bp* +u ,

where o, B, p are unknown parameters. This model
IS nonlinear, since E[y] cannot be expressed as a
linear function of the parameters. It is still possible
to fit the model by least squares, but we need to use
a nonlinear optimization package to find the param-
eter values which minimize the sum of sguares cri-

terion function. The resulting fitted mode! is
y =93.72-2234(.666)" .
This model seems to fit the data well, using only 3

parameters. As X increases, the predicted utilization

levels off at 93.72.
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It could be argued that the true regression func-
tion E[yIx] should increase with x but eventually
level off. (It certainly cannot exceed 100.) No poly-
nomia model could produce this behavior. In prin-
ciple, then, the exponential model seems most
appropriate. Now, let’'s see what conclusions are
reached by FPE and AIC., which of course know

nothing of the above considerations.

Table | gives p, SSE, R?, FPE and AIC. for
the 8 candidate models. For the polynomial
models, SSE decreases and R increases with p, as
expected, FPE selects a 6'th degree polynomidl,

and AlC selects a 4'th degree polynomial.
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Plots of the FPE and AIC. criteria, as functions
of p, reveal that AIC- exhibits a clear minimum at
p =4, while FPE seems to be wandering generaly
downward. (In fact, still higher values of p, not
shown here, would actually be preferred by FPE.)

If the exponential model is now included as a
candidate, AIC- selects it as the overall best model,
In accordance with our intuition above, while FPE

ranks it as only fifth best.
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Data Splitting

A problem with model selection as described
above is that the usual inferentia procedures based
on the selected model will not be completely valid.
The process of selecting a model entails a certain
amount of "data snooping”. In a rough sense, we
are picking out the variables that seem to be the
most significant. So it would be wrong to pretend
that this snooping never happened. For example,
given that x4 is in the selected model, the usual t-
test of Hgy:1=0 will have atype | error rate which

IS much larger than the nominal level, o.. (Why?)

A way around the problem is data splitting.
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Split the data into two subsamples, A and B,

selected at random, of sizes n; and n,. Use A for
model selection, without examining B. Then, using
this selected model, re-estimate the parameters for
the data in B. If the selected model is correct, then
al inferences based on the data in B will be valid.
This procedure may seem wasteful (why?). For-
tunately, it is not necessary to use very much of the
availlable data for the model selection stage. For
example, taking n4 to be 10% of the overall sample
size n should be adequate, assuming that AlCs IS

used, and n > 100.



