
18: MODEL SELECTION

e

l

It is important to remember that the multipl

inear regression model is, at best, just an approxi-

e

mation to the truth. It will almost never hold

xactly. Even if it did hold exactly for some set of

h

explanatory variables, we can never be sure that we

ave found the right set. In model selection, the

p

idea is to find the smallest set of variables which

rovides an adequate description of the data.

-

a

Why isn’t it a good idea to just put every vari

ble we can think of into the model? After all,

U

shouldn’t we use all the "information" we have?

nfortunately, some of this information is highly
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edundant. In the housing example, it would be a

e

f

mistake to include both the house size in squar

eet and the house size in square meters, as the

-

s

second variable gives us no new information what

oever. Furthermore, it might not be a good idea to

-

c

include both the house size and the lot size, espe

ially if these variables are deemed to be highly

correlated.

Another problem is that even pure "noise" will

e

start to look like signal if we examine it carefully

nough. For example, suppose we regress the price

sof gold (y ) on the price of silver (x ), the world’1

w 2hale population (x ), and the number of rainy
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ays in New York City (x ), for each of the past 253

3y 2ears. Presumably, x and x are of no use in

-

a

predicting y . However, a model with all three vari

bles will produce a larger R than the model with

j 1

2

ust x . (Why?) This is one reason why it is often

-ridiculous to think of R as measuring the propor2

tion of "explained" variation. It is clear, then, that

tthe model with the largest R may not be the bes2

model to use.

Would it really hurt us to have the "garbage"

variables x and x in the model above? The2 3

1

m

answer is often yes, because the coefficient of x

ay be adversely affected, and also because our
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bility to predict y may actually deteriorate if we

,include the extraneous variables. With regard to x 1

e

p

there is another issue. Some theories hold that th

rices of gold and silver are inversely related.

t

Therefore, maybe we should use the reciprocal of

he silver price instead of x . The choice of the1

-

a

appropriate transformation of the explanatory vari

bles is also part of the problem of model selection.

s

a

All explanatory variables that are available to u

re called candidate variables. Some of these vari-

-

p

ables may be transformations of others. For exam

le, we could have x = SP , x and x as above,

4

1 2 3

5x = 1/SP , x = log(SP ), where SP is the price of
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ilver. We want to decide which subset of these

e

r

candidate variables should be used in our multipl

egression model. Unfortunately, if there are K

-candidate variables, then there are 2 possible subK

e

m

set models. This grows very fast with K , so w

ay not be able to look at all subsets. The idea of

a

stepwise methods (see Jobson, Section 4.2.1) is to

void looking at all subsets. Whether or not we

t

a

have the computing power, and energy, to look a

ll subsets, we will need some measure of the qual-

-

l

ity of a given candidate model (i.e., using a particu

ar subset of the candidate variables). We have

,already seen that R is not an adequate measure2
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l

f

essentially because it does not penalize the mode

or having too many parameters. Neither does the

overall F -statistic.

Using the t -ratios for model selection can lead to

e

m

contradictory results, depending on which candidat

odel is used. For the housing example, age was

s

not significant (p = .8) in the full model, but was

ignificant (p = .047) when it was the only variable

used.

For each candidate model, we would like to con-

d

struct a numerical measure of quality which is

irectly comparable to the quality measures obtained

ofor the other models, which automatically takes int
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n

h

account the fact that different models will ofte

ave different numbers of explanatory variables, and

-

t

which automatically trades off our conflicting objec

ives to get a reasonably good description of the

m

data (e.g., make SSE small), without using too

any variables. We will consider two different

a

information criteria for this purpose. The criteria

re called FPE (Final Prediction Error), and AICC

h

i

(Corrected Akaike Information Criterion). Bot

nvolve evaluating the criterion for the various can-

m

didate models, and then choosing the model which

inimizes the criterion.
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C

The FPE Criterio

onsider the candidate model y = X β + u , where

X is n ×(p +1) and the u are iid with mean zeroi

u
2and variance σ . We do not need to assume that

the u are normal. Next, we suppose that this candi-i

date model is correct. This assumption will usually

n

c

be wrong, but it allows us to derive our selectio

riterion! Using the data y , we obtain the predicted

values, ŷ .

Imagine a vector of future observations,

y = X β + u , where the u are iid with meanF F
i
F

iz u
2ero, variance σ , and are independent of the u .

The sum of squared prediction errors corresponding
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to the predictor ŷ is

PE = e e y − ŷ e e = e eX β + u − Xb e e 2F 2 F

F 2

=

= e eX (β − b ) + u e e

e eX (β − b ) e e + e e u e e + 2(u )′X (β − b ) .

T

2 F 2 F

he expectation of PE is called the Final Pred-

-iction Error. Since since u and b are indepenF

ydent, the final prediction error is given b

E [PE ] = E [(β − b )′X ′X (β − b )] + n σ 2

= u
2

u
2

u
2

u

σ (p +1) + n σ = σ (n +p +1) ,

which can be estimated without bias by

FPE = s (n +p +1) = SSE
n −p −1
n +p +1hhhhhhh .2
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Note that FPE automatically compromises th

delity to the data and "parsimony". The fidelity is

.

T

measured by SSE , which tends to decrease with p

he other term, (n +p +1)/(n −p −1), which increases

p

with p , constitutes a penalty term designed to

revent us from using too many parameters.

l

s

To implement this method, we get the residua

um of squares SSE for each candidate model, and

h

g

then calculate FPE . We select the model whic

ives the smallest value of FPE .

CThe Corrected Akaike Information Criterion, AI C

t

Unfortunately, in small samples, or whenever the

otal number of candidate models is large, FPE will
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ften select too many variables. Another method,

w

which works better in small samples (and just as

ell as FPE in large samples) is the corrected

Akaike Information Criterion,

AIC = log(SSE ) +
n −p −3
2(p +2)hhhhhhh ,

w

C

here log denotes the natural logarithm. The model

selected by minimizing AIC will often have fewerC

e

w

variables than the one selected by FPE . To se

hy, note that the model which minimizes FPE

will also minimize log (FPE ), given by

log(FPE ) = log(SSE ) + log((n +p +1)/(n −p −1)) .

r

A

Some calculus reveals that the penalty term fo

IC increases much faster as a function of p thanC
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p

i

the penalty term for log (FPE ), particularly when

s large.

An Example

s

f

We consider a data set on the utilization of tree

or the production of matches. For each of 1790

a

p

trees, the "expected utilization" was measured (as

ercentage of the volume), along with the diameter

g

(in inches) at breast height. The data were then

rouped according to 16 classes, according to diam-

r

r

eter. Our 16 data points consist of x , the diamete

epresenting the class, and y , the average utilization

-

s

for the trees in the given class. We want to under

tand how utilization depends on diameter.
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scatterplot reveals that the relationship

n

i

between x and y is not linear. Although utilizatio

ncreases at first, it seems to eventually level off.

o

t

We will try fitting polynomials of degrees 1-7 t

he data. To fit a polynomial of degree p , we sim-

,ply use the explanatory variables x , . . . , x1 p

w j
j

0here x = x . (Of course, we also include x , a

-

s

column of ones.) The resulting polynomial regres

ion model is

y = β + β x + . . . + β x + u .

T

0 1 p
p

his is a linear regression model, since it is linear

a

l

in the parameters, even though E [y e x ] is not

inear function of the diameter, x .
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e will also try an exponential model, of form

y = α + β ρ + u ,x

l

i

where α, β, ρ are unknown parameters. This mode

s nonlinear, since E [y ] cannot be expressed as a

e

t

linear function of the parameters. It is still possibl

o fit the model by least squares, but we need to use

-

e

a nonlinear optimization package to find the param

ter values which minimize the sum of squares cri-

terion function. The resulting fitted model is

ŷ = 93.72 − 2234 (.666) .x

3

p

This model seems to fit the data well, using only

arameters. As x increases, the predicted utilization

levels off at 93.72.
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-

t

It could be argued that the true regression func

ion E [y e x ] should increase with x but eventually

-

n

level off. (It certainly cannot exceed 100.) No poly

omial model could produce this behavior. In prin-

t

a

ciple, then, the exponential model seems mos

ppropriate. Now, let’s see what conclusions are

reached by FPE and AIC , which of course knowC

.nothing of the above considerations

Table I gives p , SSE , R , FPE and AIC for2
C

l

m

the 8 candidate models. For the polynomia

odels, SSE decreases and R increases with p , as2

,

a

expected, FPE selects a 6’th degree polynomial

nd AIC selects a 4’th degree polynomial.C
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sPlots of the FPE and AIC criteria, as functionC

o Cf p , reveal that AIC exhibits a clear minimum at

d

p = 4, while FPE seems to be wandering generally

ownward. (In fact, still higher values of p , not

shown here, would actually be preferred by FPE .)

If the exponential model is now included as a

,candidate, AIC selects it as the overall best modelC

in accordance with our intuition above, while FPE

ranks it as only fifth best.
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g

A

Data Splittin

problem with model selection as described

d

o

above is that the usual inferential procedures base

n the selected model will not be completely valid.

a

The process of selecting a model entails a certain

mount of "data snooping". In a rough sense, we

e

m

are picking out the variables that seem to be th

ost significant. So it would be wrong to pretend

,

g

that this snooping never happened. For example

iven that x is in the selected model, the usual t -

0

1

1test of H : β = 0 will have a type I error rate which

is much larger than the nominal level, α. (Why?)

A way around the problem is data splitting.



S

- 18 -

plit the data into two subsamples, A and B,

selected at random, of sizes n and n . Use A for1 2

g

t

model selection, without examining B. Then, usin

his selected model, re-estimate the parameters for

a

the data in B. If the selected model is correct, then

ll inferences based on the data in B will be valid.

t

This procedure may seem wasteful (why?). For-

unately, it is not necessary to use very much of the

r

e

available data for the model selection stage. Fo

xample, taking n to be 10% of the overall sample1

C s

u

size n should be adequate, assuming that AIC i

sed, and n ≥ 100.


