VALUATION: PACKET 2
RELATIVE VALUATION, ASSET-BASED VALUATION AND PRIVATE COMPANY VALUATION
The Essence of Relative Valuation (Pricing)

- In relative valuation, the value of an asset is compared to the values assessed by the market for similar or comparable assets.
- To do relative valuation then,
 - we need to identify comparable assets and obtain market values for these assets
 - convert these market values into standardized values, since the absolute prices cannot be compared. This process of standardizing creates price multiples.
 - compare the standardized value or multiple for the asset being analyzed to the standardized values for comparable asset, controlling for any differences between the firms that might affect the multiple, to judge whether the asset is under or over valued.
Relative valuation is pervasive...

- Most asset valuations are relative.
- Most equity valuations on Wall Street are relative valuations.
 - Almost 85% of equity research reports are based upon a multiple and comparables.
 - More than 50% of all acquisition valuations are based upon multiples.
 - Rules of thumb based on multiples are not only common but are often the basis for final valuation judgments.
- While there are more discounted cashflow valuations in consulting and corporate finance, they are often relative valuations masquerading as discounted cash flow valuations.
 - The objective in many discounted cashflow valuations is to back into a number that has been obtained by using a multiple.
 - The terminal value in a significant number of discounted cashflow valuations is estimated using a multiple.

Aswath Damodaran
Why relative valuation?

“If you think I’m crazy, you should see the guy who lives across the hall”

Jerry Seinfeld talking about Kramer in a Seinfeld episode

“A little inaccuracy sometimes saves tons of explanation”

H.H. Munro

“If you are going to screw up, make sure that you have lots of company”

Ex-portfolio manager

Aswath Damodaran
The Market Imperative....

- Relative valuation is much more likely to reflect market perceptions and moods than discounted cash flow valuation. This can be an advantage when it is important that the price reflect these perceptions as is the case when
 - the objective is to sell a security at that price today (as in the case of an IPO)
 - investing on “momentum” based strategies
- With relative valuation, there will always be a significant proportion of securities that are under valued and over valued.
- Since portfolio managers are judged based upon how they perform on a relative basis (to the market and other money managers), relative valuation is more tailored to their needs
- Relative valuation generally requires less information than discounted cash flow valuation (especially when multiples are used as screens)
Multiples are just standardized estimates of price...

- Market value of equity
- Market value for the firm
 - Firm value = Market value of equity + Market value of debt
- Market value of operating assets of firm
 - Enterprise value (EV) = Market value of equity + Market value of debt - Cash

Numerator = What you are paying for the asset

Denominator = What you are getting in return

Numerator = What you are paying for the asset

Denominator = What you are getting in return

- **Revenues**
 - a. Accounting revenues
 - b. Drivers
 - # Customers
 - # Subscribers
 = # units

- **Earnings**
 - a. To Equity investors
 - Net Income
 - Earnings per share
 - b. To Firm
 - Operating income (EBIT)

- **Cash flow**
 - a. To Equity
 - Net Income + Depreciation
 - Free CF to Equity
 - b. To Firm
 - EBIT + DA (EBITDA)
 - Free CF to Firm

- **Book Value**
 - a. Equity
 = BV of equity
 - b. Firm
 = BV of debt + BV of equity
 - c. Invested Capital
 = BV of equity + BV of debt - Cash
The Four Steps to Deconstructing Multiples

- Define the multiple
 - In use, the same multiple can be defined in different ways by different users. When comparing and using multiples, estimated by someone else, it is critical that we understand how the multiples have been estimated.

- Describe the multiple
 - Too many people who use a multiple have no idea what its cross sectional distribution is. If you do not know what the cross sectional distribution of a multiple is, it is difficult to look at a number and pass judgment on whether it is too high or low.

- Analyze the multiple
 - It is critical that we understand the fundamentals that drive each multiple, and the nature of the relationship between the multiple and each variable.

- Apply the multiple
 - Defining the comparable universe and controlling for differences is far more difficult in practice than it is in theory.
Definitional Tests

☐ Is the multiple consistently defined?

- Proposition 1: Both the value (the numerator) and the standardizing variable (the denominator) should be to the same claimholders in the firm. In other words, the value of equity should be divided by equity earnings or equity book value, and firm value should be divided by firm earnings or book value.

☐ Is the multiple uniformly estimated?

- The variables used in defining the multiple should be estimated uniformly across assets in the “comparable firm” list.
- If earnings-based multiples are used, the accounting rules to measure earnings should be applied consistently across assets. The same rule applies with book-value based multiples.
Example 1: Price Earnings Ratio: Definition

PE = Market Price per Share / Earnings per Share

- There are a number of variants on the basic PE ratio in use. They are based upon how the price and the earnings are defined.

Price:
- is usually the current price
- is sometimes the average price for the year

EPS:
- EPS in most recent financial year
- EPS in trailing 12 months
- Forecasted earnings per share next year
- Forecasted earnings per share in future year
Example 2: Staying on PE ratios

Assuming that you are comparing the PE ratios across technology companies, many of which have options outstanding. What measure of PE ratio would yield the most consistent comparisons?

a. Price/ Primary EPS (actual shares, no options)

b. Price/ Fully Diluted EPS (actual shares + all options)

c. Price/ Partially Diluted EPS (counting only in-the-money options)

d. Other
Example 3: Enterprise Value /EBITDA Multiple

- The enterprise value to EBITDA multiple is obtained by netting cash out against debt to arrive at enterprise value and dividing by EBITDA.

\[
\frac{\text{Enterprise Value}}{\text{EBITDA}} = \frac{\text{Market Value of Equity} + \text{Market Value of Debt} - \text{Cash}}{\text{Earnings before Interest, Taxes and Depreciation}}
\]

1. Why do we net out cash from firm value?
2. What happens if a firm has cross holdings which are categorized as:
 - Minority interests?
 - Majority active interests?
The bubbles and busts in housing prices has led investors to search for a multiple that they can use to determine when housing prices are getting out of line. One measure that has acquired adherents is the ratio of housing price to annual net rental income (for renting out the same house). Assume that you decide to compute this ratio and compare it to the multiple at which stocks are trading. Which valuation ratio would be the one that corresponds to the house price/rent ratio?

a. Price Earnings Ratio
b. EV to Sales
c. EV to EBITDA
d. EV to EBIT
Descriptive Tests

- What is the average and standard deviation for this multiple, across the universe (market)?
- What is the median for this multiple?
 - The median for this multiple is often a more reliable comparison point.
- How large are the outliers to the distribution, and how do we deal with the outliers?
 - Throwing out the outliers may seem like an obvious solution, but if the outliers all lie on one side of the distribution (they usually are large positive numbers), this can lead to a biased estimate.
- Are there cases where the multiple cannot be estimated? Will ignoring these cases lead to a biased estimate of the multiple?
- How has this multiple changed over time?
1. Multiples have skewed distributions...

US company PE Ratios

PE Ratios for US Companies: January 2019

Aswath Damodaran
2. Making statistics “dicey”

<table>
<thead>
<tr>
<th></th>
<th>Current PE</th>
<th>Trailing PE</th>
<th>Forward PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>7,209</td>
<td>7,209</td>
<td>7,209</td>
</tr>
<tr>
<td>Number with PE</td>
<td>2,965</td>
<td>2,957</td>
<td>2,489</td>
</tr>
<tr>
<td>Average</td>
<td>77.18</td>
<td>35.33</td>
<td>26.91</td>
</tr>
<tr>
<td>Median</td>
<td>18.61</td>
<td>15.80</td>
<td>14.44</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.68</td>
<td>1.94</td>
<td>2.65</td>
</tr>
<tr>
<td>Maximum</td>
<td>48700.00</td>
<td>3400.00</td>
<td>1769.64</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>990.76</td>
<td>118.07</td>
<td>66.67</td>
</tr>
<tr>
<td>Standard error</td>
<td>18.20</td>
<td>2.17</td>
<td>1.34</td>
</tr>
<tr>
<td>Skewness</td>
<td>41.60</td>
<td>15.55</td>
<td>13.63</td>
</tr>
<tr>
<td>25th percentile</td>
<td>11.70</td>
<td>10.36</td>
<td>10.12</td>
</tr>
<tr>
<td>75th percentile</td>
<td>32.35</td>
<td>27.31</td>
<td>23.16</td>
</tr>
</tbody>
</table>

US firms in January 2019
3. Markets have a lot in common: Comparing Global PEs
3a. And the differences are sometimes revealing...
Price to Book Ratios across globe – January 2013

<table>
<thead>
<tr>
<th>Region</th>
<th>25th percentile</th>
<th>Median</th>
<th>75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.86</td>
<td>1.54</td>
<td>3.16</td>
</tr>
<tr>
<td>Europe</td>
<td>0.67</td>
<td>1.22</td>
<td>2.33</td>
</tr>
<tr>
<td>Japan</td>
<td>0.44</td>
<td>0.67</td>
<td>1.03</td>
</tr>
<tr>
<td>Aus, NZ & Canada</td>
<td>0.62</td>
<td>1.21</td>
<td>2.50</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>0.64</td>
<td>1.18</td>
<td>2.18</td>
</tr>
<tr>
<td>Global</td>
<td>0.63</td>
<td>1.16</td>
<td>2.23</td>
</tr>
</tbody>
</table>
4. Simplistic rules almost always break down... 6 times EBITDA was not cheap in 2010...
But it may be in 2019, unless you are in Russia.
Analytical Tests

- What are the fundamentals that determine and drive these multiples?
 - Proposition 2: Embedded in every multiple are all of the variables that drive every discounted cash flow valuation - growth, risk and cash flow patterns.

- How do changes in these fundamentals change the multiple?
 - The relationship between a fundamental (like growth) and a multiple (such as PE) is almost never linear.
 - Proposition 3: It is impossible to properly compare firms on a multiple, if we do not know how fundamentals and the multiple move.
A Simple Analytical device

If Equity Multiple
- Start with a dividend or FCFE model, preferably simple.
 - Price = EPS * Payout / (r - g)
- Divide your dividend or FCFE model by denominator of equity multiple.
 - Price/Book = ROE * Payout / (r - g)
- Intrinsic version of equity multiple, with drivers of value
 - Price/Book = f(ROE, r, g, Payout)

If EV Multiple
- Start with an operating asset value model, preferably simple.
 - EV = EBIT (1-t) (1-RIR) / (WACC - g)
- Divide your operating asset model by denominator of EV multiple.
 - EV/Sales = After-tax Operating Margin (1-RIR) / (WACC - g)
- Intrinsic version of EV multiple, with drivers of value
 - EV/Sales = f(After-tax Operating Margin, RIR, WACC, g)
I. PE Ratios

- To understand the fundamentals, start with a basic equity discounted cash flow model.

 - With the dividend discount model,
 \[P_0 = \frac{DPS_1}{r - g_n} \]

 - Dividing both sides by the current earnings per share,
 \[\frac{P_0}{EPS_0} = \frac{PE}{EPS_0} = \frac{\text{Payout Ratio} \times (1 + g_n)}{r - g_n} \]

 - If this had been a FCFE Model,
 \[P_0 = \frac{FCFE_1}{r - g_n} \]

 \[\frac{P_0}{EPS_0} = \frac{PE}{EPS_0} = \frac{(FCFE/Earnings) \times (1 + g_n)}{r - g_n} \]
The price-earnings ratio for a high growth firm can also be related to fundamentals. In the special case of the two-stage dividend discount model, this relationship can be made explicit fairly simply:

\[
P_0 = \frac{\text{EPS}_0 \cdot \text{Payout Ratio} \cdot (1+g) \cdot \left(1 - \frac{(1+g)^n}{(1+r)^n}\right)}{r-g} + \frac{\text{EPS}_0 \cdot \text{Payout Ratio}_n \cdot (1+g)^n \cdot (1+g_n)}{(r-g_n)(1+r)^n}
\]

For a firm that does not pay what it can afford to in dividends, substitute FCFE/Earnings for the payout ratio.

Dividing both sides by the earnings per share:

\[
\frac{P_0}{\text{EPS}_0} = \frac{\text{Payout Ratio} \cdot (1+g) \cdot \left(1 - \frac{(1+g)^n}{(1+r)^n}\right)}{r-g} + \frac{\text{Payout Ratio}_n \cdot (1+g)^n \cdot (1+g_n)}{(r-g_n)(1+r)^n}
\]
A Simple Example

Assume that you have been asked to estimate the PE ratio for a firm which has the following characteristics:

<table>
<thead>
<tr>
<th>Variable</th>
<th>High Growth Phase</th>
<th>Stable Growth Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Growth Rate</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Beta</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Number of years</td>
<td>5 years</td>
<td>Forever after year 5</td>
</tr>
<tr>
<td>Riskfree rate = T.Bond Rate</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Required rate of return</td>
<td>6% + 1(5.5%) = 11.5%</td>
<td></td>
</tr>
</tbody>
</table>

\[P_0 = \frac{0.20 \times (1.25)^5 \times \left(1 - \frac{(1.25)^5}{(1.115)^5} \right)}{0.115 - 0.25} + \frac{0.50 \times (1.25)^5 \times (1.08)}{(0.115 - 0.08) \times (1.115)^5} = 28.75 \]
a. PE and Growth: Firm grows at x% for 5 years, 8% thereafter
b. PE and Risk: A Follow up Example

PE Ratios and Beta: Growth Scenarios

Aswath Damodaran
Example 1: Comparing PE ratios across Emerging Markets - March 2014 (pre-Ukraine)

Russia looks really cheap, right?
Example 2: An Old Example with Emerging Markets: June 2000

<table>
<thead>
<tr>
<th>Country</th>
<th>PE Ratio</th>
<th>Interest Rates</th>
<th>GDP Real Growth</th>
<th>Country Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>14</td>
<td>18.00%</td>
<td>2.50%</td>
<td>45</td>
</tr>
<tr>
<td>Brazil</td>
<td>21</td>
<td>14.00%</td>
<td>4.80%</td>
<td>35</td>
</tr>
<tr>
<td>Chile</td>
<td>25</td>
<td>9.50%</td>
<td>5.50%</td>
<td>15</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>20</td>
<td>8.00%</td>
<td>6.00%</td>
<td>15</td>
</tr>
<tr>
<td>India</td>
<td>17</td>
<td>11.48%</td>
<td>4.20%</td>
<td>25</td>
</tr>
<tr>
<td>Indonesia</td>
<td>15</td>
<td>21.00%</td>
<td>4.00%</td>
<td>50</td>
</tr>
<tr>
<td>Malaysia</td>
<td>14</td>
<td>5.67%</td>
<td>3.00%</td>
<td>40</td>
</tr>
<tr>
<td>Mexico</td>
<td>19</td>
<td>11.50%</td>
<td>5.50%</td>
<td>30</td>
</tr>
<tr>
<td>Pakistan</td>
<td>14</td>
<td>19.00%</td>
<td>3.00%</td>
<td>45</td>
</tr>
<tr>
<td>Peru</td>
<td>15</td>
<td>18.00%</td>
<td>4.90%</td>
<td>50</td>
</tr>
<tr>
<td>Phillipines</td>
<td>15</td>
<td>17.00%</td>
<td>3.80%</td>
<td>45</td>
</tr>
<tr>
<td>Singapore</td>
<td>24</td>
<td>6.50%</td>
<td>5.20%</td>
<td>5</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>10.00%</td>
<td>4.80%</td>
<td>25</td>
</tr>
<tr>
<td>Thailand</td>
<td>21</td>
<td>12.75%</td>
<td>5.50%</td>
<td>25</td>
</tr>
<tr>
<td>Turkey</td>
<td>12</td>
<td>25.00%</td>
<td>2.00%</td>
<td>35</td>
</tr>
<tr>
<td>Venezuela</td>
<td>20</td>
<td>15.00%</td>
<td>3.50%</td>
<td>45</td>
</tr>
</tbody>
</table>
Regression Results

- The regression of PE ratios on these variables provides the following –

\[\text{PE} = 16.16 - 7.94 \text{ Interest Rates} + 154.40 \text{ Growth in GDP} - 0.1116 \text{ Country Risk} \]

\[R \text{ Squared} = 73\% \]
Predicted PE Ratios

<table>
<thead>
<tr>
<th>Country</th>
<th>PE Ratio</th>
<th>Interest Rates</th>
<th>GDP Real Growth</th>
<th>Country Risk</th>
<th>Predicted PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>14</td>
<td>18.00%</td>
<td>2.50%</td>
<td>45</td>
<td>13.57</td>
</tr>
<tr>
<td>Brazil</td>
<td>21</td>
<td>14.00%</td>
<td>4.80%</td>
<td>35</td>
<td>18.55</td>
</tr>
<tr>
<td>Chile</td>
<td>25</td>
<td>9.50%</td>
<td>5.50%</td>
<td>15</td>
<td>22.22</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>20</td>
<td>8.00%</td>
<td>6.00%</td>
<td>15</td>
<td>23.11</td>
</tr>
<tr>
<td>India</td>
<td>17</td>
<td>11.48%</td>
<td>4.20%</td>
<td>25</td>
<td>18.94</td>
</tr>
<tr>
<td>Indonesia</td>
<td>15</td>
<td>21.00%</td>
<td>4.00%</td>
<td>50</td>
<td>15.09</td>
</tr>
<tr>
<td>Malaysia</td>
<td>14</td>
<td>5.67%</td>
<td>3.00%</td>
<td>40</td>
<td>15.87</td>
</tr>
<tr>
<td>Mexico</td>
<td>19</td>
<td>11.50%</td>
<td>5.50%</td>
<td>30</td>
<td>20.39</td>
</tr>
<tr>
<td>Pakistan</td>
<td>14</td>
<td>19.00%</td>
<td>3.00%</td>
<td>45</td>
<td>14.26</td>
</tr>
<tr>
<td>Peru</td>
<td>15</td>
<td>18.00%</td>
<td>4.90%</td>
<td>50</td>
<td>16.71</td>
</tr>
<tr>
<td>Phillipines</td>
<td>15</td>
<td>17.00%</td>
<td>3.80%</td>
<td>45</td>
<td>15.65</td>
</tr>
<tr>
<td>Singapore</td>
<td>24</td>
<td>6.50%</td>
<td>5.20%</td>
<td>5</td>
<td>23.11</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>10.00%</td>
<td>4.80%</td>
<td>25</td>
<td>19.98</td>
</tr>
<tr>
<td>Thailand</td>
<td>21</td>
<td>12.75%</td>
<td>5.50%</td>
<td>25</td>
<td>20.85</td>
</tr>
<tr>
<td>Turkey</td>
<td>12</td>
<td>25.00%</td>
<td>2.00%</td>
<td>35</td>
<td>13.35</td>
</tr>
<tr>
<td>Venezuela</td>
<td>20</td>
<td>15.00%</td>
<td>3.50%</td>
<td>45</td>
<td>15.35</td>
</tr>
</tbody>
</table>
Example 3: PE ratios for the S&P 500 in January 2017

<table>
<thead>
<tr>
<th>Year Range</th>
<th>PE</th>
<th>Normalized PE</th>
<th>CAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969-2016</td>
<td>16.18</td>
<td>20.80</td>
<td>18.03</td>
</tr>
<tr>
<td>1986-2016</td>
<td>18.63</td>
<td>24.04</td>
<td>21.55</td>
</tr>
<tr>
<td>1996-2016</td>
<td>19.72</td>
<td>25.60</td>
<td>23.40</td>
</tr>
<tr>
<td>2006-2016</td>
<td>17.36</td>
<td>21.27</td>
<td>19.66</td>
</tr>
<tr>
<td>2009-2016</td>
<td>16.88</td>
<td>20.72</td>
<td>19.24</td>
</tr>
<tr>
<td>Jan-17</td>
<td>20.57</td>
<td>25.00</td>
<td>23.91</td>
</tr>
</tbody>
</table>
Is low (high) PE cheap (expensive)?

- A market strategist argues that stocks are expensive because the PE ratio in 2017 is high relative to the average PE ratio across time. Do you agree?
 a. Yes
 b. No

- If you do not agree, what factors might explain the higher PE ratio today?

- Would you respond differently if the market strategist has a Nobel Prize in Economics?
E/P Ratios, T.Bond Rates and Term Structure

EP Ratios, and Interest Rates: 1960 - 2018

Aswath Damodaran
Regression Results

In the following regression, using 1960-2018 data, we regress E/P ratios against the level of T.Bond rates and a term structure variable (T.Bond - T.Bill rate)

\[
\text{EP Ratio} = 0.0376 + 0.5325 \times \text{T.Bond Rate} - 0.1595 \times (\text{T.Bond Rate} - \text{T.Bill Rate})
\]

\[\begin{array}{c|c|c|c}
\text{EP} & \text{T.Bond Rate} & \text{T. Bond minus T. Bill} \\
\hline
1.0000 & 0.6431 & -0.1388 \\
\hline
\end{array}\]

\[\begin{array}{c|c|c|c}
0.0376 & 0.5325 & -0.1595 \\
(5.84) & (6.22) & (-0.78) \\
\end{array}\]

R squared = 41.97%

Going back to 2008, this is what the regression looked like:

\[
\text{E/P} = 2.56\% + 0.7044 \times \text{T.Bond Rate} - 0.3289 \times (\text{T.Bond Rate} - \text{T.Bill Rate})
\]

\[\begin{array}{c|c|c|c}
\text{E/P} & \text{T.Bond Rate} & \text{T. Bond minus T. Bill} \\
\hline
1.0000 & 0.6431 & -0.0944 \\
\hline
\end{array}\]

\[\begin{array}{c|c|c|c}
2.56\% & 0.7044 & -0.3289 \\
(4.71) & (7.10) & (1.46) \\
\end{array}\]

R squared = 50.71%

The R-squared has dropped and the differential with the T.Bill rate has lost significance. How would you read this result?