Growth III

It’s all in the fundamentals
Fundamental Growth Rates

\[
\begin{align*}
\text{Investment in Existing Projects} & \times \text{Current Return on Investment on Projects} \times 12\% = \text{Current Earnings} \times 120 \\
\text{Investment in Existing Projects} & \times \text{Next Period’s Return on Investment} \times 12\% + \text{Investment in New Projects} \times 12\% = \text{Next Period’s Earnings} \times 132 \\
\text{Investment in Existing Projects} & \times \text{Change in ROI from current to next period: 0\%} + \text{Investment in New Projects} \times 12\% = \text{Change in Earnings} \times 12
\end{align*}
\]
Growth Rate Derivations

In the special case where ROI on existing projects remains unchanged and is equal to the ROI on new projects:

\[
\text{Investment in New Projects} \times \text{Return on Investment} = \frac{\text{Change in Earnings}}{\text{Current Earnings}}
\]

\[
\frac{100}{120} \times 12\% = \frac{12}{120}
\]

Reinvestment Rate

\[
83.33\% \times 12\% = 10\%
\]

in the more general case where ROI can change from period to period, this can be expanded as follows:

\[
\text{Investment in Existing Projects} \times (\text{Change in ROI}) + \text{New Projects (ROI)} = \frac{\text{Change in Earnings}}{\text{Current Earnings}}
\]

\[
\text{Investment in Existing Projects} \times \text{Current ROI} = \frac{\text{Change in Earnings}}{\text{Current Earnings}}
\]

For instance, if the ROI increases from 12% to 13%, the expected growth rate can be written as follows:

\[
\frac{1000 \times (.13 - .12) + 100 (13\%)}{1000 \times .12} = \frac{23}{120} = 19.17\%
\]

Aswath Damodaran
## Estimating Fundamental Growth from new investments: Three variations

<table>
<thead>
<tr>
<th>Earnings Measure</th>
<th>Reinvestment Measure</th>
<th>Return Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings per share</td>
<td>Retention Ratio = % of net income retained by the company = 1 – Payout ratio</td>
<td>Return on Equity = Net Income/ Book Value of Equity</td>
</tr>
<tr>
<td>Net Income from non-cash assets</td>
<td>Equity reinvestment Rate = (Net Cap Ex + Change in non-cash WC – Change in Debt)/ (Net Income)</td>
<td>Non-cash ROE = Net Income from non-cash assets/ (Book value of equity – Cash)</td>
</tr>
<tr>
<td>Operating Income</td>
<td>Reinvestment Rate = (Net Cap Ex + Change in non-cash WC)/ After-tax Operating Income</td>
<td>Return on Capital or ROIC = After-tax Operating Income/ (Book value of equity + Book value of debt – Cash)</td>
</tr>
</tbody>
</table>

Aswath Damodaran
I. Expected Long Term Growth in EPS

- When looking at growth in earnings per share, these inputs can be cast as follows:
  - Reinvestment Rate = Retained Earnings/ Current Earnings = Retention Ratio
  - Return on Investment = ROE = Net Income/Book Value of Equity

- In the special case where the current ROE is expected to remain unchanged
  \[ g_{\text{EPS}} = \frac{\text{Retained Earnings}_{t-1}}{\text{NI}_{t-1}} \times \text{ROE} \]
  \[ = \text{Retention Ratio} \times \text{ROE} \]
  \[ = b \times \text{ROE} \]

- **Proposition 1**: The expected growth rate in earnings for a company cannot exceed its return on equity in the long term.

- Return on equity (based on 2008 earnings) = 17.56%
- Retention Ratio (based on 2008 earnings and dividends) = 45.37%
- Expected growth rate in earnings per share for Wells Fargo, if it can maintain these numbers.
  \[ \text{Expected Growth Rate} = 0.4537 \times (17.56\%) = 7.97\% \]
Assume now that the banking crisis of 2008 will have an impact on the capital ratios and profitability of banks. In particular, you can expect that the book capital (equity) needed by banks to do business will increase 30%, starting now.

Assuming that Wells continues with its existing businesses, estimate the expected growth rate in earnings per share for the future.

\[
\text{New Return on Equity} = \frac{\text{Expected growth rate}}{1}
\]
One way to pump up ROE: Use more debt

\[
\text{ROE} = \text{ROC} + \frac{D/E}{\text{ROC} - i(1-t)}
\]

where,

\[
\text{ROC} = \frac{\text{EBIT}_t (1 - \text{tax rate})}{\text{Book value of Capital}_{t-1}}
\]

\[
D/E = \frac{\text{BV of Debt}}{\text{BV of Equity}}
\]

\[
i = \frac{\text{Interest Expense on Debt}}{\text{BV of Debt}}
\]

\[
t = \text{Tax rate on ordinary income}
\]

- Note that Book value of capital = Book Value of Debt + Book value of Equity - Cash.
Decomposing ROE: Brahma in 1998

- Brahma (now Ambev) had an extremely high return on equity, partly because it borrowed money at a rate well below its return on capital
  - Return on Capital = 19.91%
  - Debt/Equity Ratio = 77%
  - After-tax Cost of Debt = 5.61%
  - Return on Equity = ROC + D/E (ROC - i(1-t))
    \[ = 19.91\% + 0.77 (19.91\% - 5.61\%) = 30.92\% \]

- This seems like an easy way to deliver higher growth in earnings per share. What (if any) is the downside?
Decomposing ROE: Titan Watches (India) in 2000

- Return on Capital = 9.54%
- Debt/Equity Ratio = 191% (book value terms)
- After-tax Cost of Debt = 10.125%
- Return on Equity = ROC + D/E (ROC - i(1-t))
  = 9.54% + 1.91 (9.54% - 10.125%) = 8.42%
II. Expected Growth in Net Income from non-cash assets

- The limitation of the EPS fundamental growth equation is that it focuses on per share earnings and assumes that reinvested earnings are invested in projects earning the return on equity. To the extent that companies retain money in cash balances, the effect on net income can be muted.

- A more general version of expected growth in earnings can be obtained by substituting in the equity reinvestment into real investments (net capital expenditures and working capital) and modifying the return on equity definition to exclude cash:
  - Net Income from non-cash assets = Net income – Interest income from cash \((1- t)\)
  - Equity Reinvestment Rate = \((\text{Net Capital Expenditures } + \text{Change in Working Capital}) \cdot (1 - \text{Debt Ratio})\)/ Net Income from non-cash assets
  - Non-cash ROE = Net Income from non-cash assets/ (BV of Equity – Cash)
  - Expected Growth of Net Income = Equity Reinvestment Rate \* Non-cash ROE

Aswath Damodaran
Estimating expected growth in net income from non-cash assets: Coca Cola in 2010

- In 2010, Coca Cola reported net income of $11,809 million. It had a total book value of equity of $25,346 million at the end of 2009.
- Coca Cola had a cash balance of $7,021 million at the end of 2009, on which it earned income of $105 million in 2010.
- Coca Cola had capital expenditures of $2,215 million, depreciation of $1,443 million and reported an increase in working capital of $335 million. Coca Cola’s total debt increased by $150 million during 2010.

- Equity Reinvestment = 2215 - 1443 + 335 - 150 = $957 million
- Non-cash Net Income = $11,809 - $105 = $11,704 million
- Non-cash book equity = $25,346 - $7021 = $18,325 million
- Reinvestment Rate = $957 million/ $11,704 million = 8.18%
- Non-cash ROE = $11,704 million/ $18,325 million = 63.87%
- Expected growth rate = 8.18% * 63.87% = 5.22%
III. Expected Growth in EBIT And Fundamentals: Stable ROC and Reinvestment Rate

- When looking at growth in operating income, the definitions are:
  - Reinvestment Rate = (Net Capital Expenditures + Change in WC)/EBIT(1-t)
  - Return on Investment = ROC = EBIT(1-t)/(BV of Debt + BV of Equity-Cash)

- Reinvestment Rate and Return on Capital
  Expected Growth rate in Operating Income
  = (Net Capital Expenditures + Change in WC)/EBIT(1-t) * ROC
  = Reinvestment Rate * ROC

- Proposition: The net capital expenditure needs of a firm, for a given growth rate, should be inversely proportional to the quality of its investments.
Creating Growth in Operating Income, if fundamentals stay unchanged

- **Cisco’s Fundamentals**
  - Reinvestment Rate = 106.81%
  - Return on Capital = 34.07%
  - Expected Growth in EBIT = (1.0681)(.3407) = 36.39%

- **Motorola’s Fundamentals**
  - Reinvestment Rate = 52.99%
  - Return on Capital = 12.18%
  - Expected Growth in EBIT = (.5299)(.1218) = 6.45%

- Cisco’s expected growth rate is clearly much higher than Motorola’s sustainable growth rate. As a potential investor in Cisco, what would worry you the most about this forecast?
  a. That Cisco’s return on capital may be overstated (why?)
  b. That Cisco’s reinvestment comes mostly from acquisitions (why?)
  c. That Cisco is getting bigger as a firm (why?)
  d. That Cisco is viewed as a star (why?)
  e. All of the above

Aswath Damodaran
The Magical Number: ROIC (or any accounting return) and its limits

**Accounting Issues**
- Operating income can be skewed by accounting misclassification (leases and R&D) and by unusual expenses/income.
- Computed as operating income in most recent 12 months, net of the effective tax rate paid during those 12 months.

**Life Cycle Effect**
- Current earnings are not indicative of long term earnings potential for young & infrastructure firms.

**Return on Invested Capital**
- After-tax Operating Income
  - Capital Invested in existing assets

**Accounting Write-offs**
- Writing off mistakes can reduce invested capital & make it look better than it should.

**Invested Capital**
- Book value of equity + Book value of debt - Cash & Cross holdings

**Accounting misclassification**
- When capital expenses (R&D) and financial expenses (leases) are miscategorized as operating expenses, invested capital will be understated.

**Inflation**
- If asset book value is not adjusted for inflation, capital invested in older assets will be understated.

Aswath Damodaran
IV. Operating Income Growth when Return on Capital is Changing

- When the return on capital is changing, there will be a second component to growth, positive if the return on capital is increasing and negative if the return on capital is decreasing.

- If $\text{ROC}_t$ is the return on capital in period $t$ and $\text{ROC}_{t+1}$ is the return on capital in period $t+1$, the expected growth rate in operating income will be:

  \[
  \text{Expected Growth Rate} = \text{ROC}_{t+1} \times \text{Reinvestment rate} + \frac{\text{ROC}_{t+1} - \text{ROC}_t}{\text{ROC}_t}
  \]

- If the change is over multiple periods, the second component should be spread out over each period.
Motorola’s Growth Rate

- Motorola’s current return on capital is 12.18% and its reinvestment rate is 52.99%.
- We expect Motorola’s return on capital to rise to 17.22% over the next 5 years (which is halfway towards the industry average).

\[
\text{Expected Growth Rate} = \text{ROC}_{\text{New Investments}} \times \text{Reinvestment Rate}_{\text{Current}} + \left\{ \left[ 1 + \left( \frac{\text{ROC}_{\text{In 5 years}} - \text{ROC}_{\text{Current}}}{\text{ROC}_{\text{Current}}} \right) \right]^{1/5} - 1 \right\}
\]

\[
= 0.1722 \times 0.5299 + \left\{ \left[ 1 + \left( 0.1722 - 0.1218 \right) / 0.1218 \right]^{1/5} - 1 \right\}
\]

\[
= 0.1629 \text{ or } 16.29\% 
\]

- One way to think about this is to decompose Motorola’s expected growth into:
  - Growth from new investments: 0.1722 \times 0.5299 = 9.12%
  - Growth from more efficiently using existing investments: 16.29\% - 9.12\% = 7.17%

Note that I am assuming that the new investments start making 17.22% immediately, while allowing for existing assets to improve returns gradually.
The Value of Growth

Expected growth = Growth from new investments + Efficiency growth
= Reinv Rate * ROC + (ROC_t-ROC_{t-1})/ROC_{t-1}

Assume that your cost of capital is 10%. As an investor, rank these firms in the order of most value growth to least value growth.
Growth IV

Top Down Growth
Estimating Growth when Operating Income is Negative or Margins are changing

- All of the fundamental growth equations assume that the firm has a return on equity or return on capital it can sustain in the long term.
- When operating income is negative or margins are expected to change over time, we use a three step process to estimate growth:
  - Estimate growth rates in revenues over time
    - Determine the total market (given your business model) and estimate the market share that you think your company will earn.
    - Decrease the growth rate as the firm becomes larger
    - Keep track of absolute revenues to make sure that the growth is feasible
  - Estimate expected operating margins each year
    - Set a target margin that the firm will move towards
    - Adjust the current margin towards the target margin
  - Estimate the capital that needs to be invested to generate revenue growth and expected margins
    - Estimate a sales to capital ratio that you will use to generate reinvestment needs each year.
### Tesla in July 2015: Growth and Profitability

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenues</th>
<th>Revenue Growth</th>
<th>Operating Income</th>
<th>Operating Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>$2,013.50</td>
<td></td>
<td>$(21.81)</td>
<td>-1.08%</td>
</tr>
<tr>
<td>1</td>
<td>$3,322.28</td>
<td>65.00%</td>
<td>$7.48</td>
<td>0.23%</td>
</tr>
<tr>
<td>2</td>
<td>$5,481.75</td>
<td>65.00%</td>
<td>$84.06</td>
<td>1.53%</td>
</tr>
<tr>
<td>3</td>
<td>$9,044.89</td>
<td>65.00%</td>
<td>$257.03</td>
<td>2.84%</td>
</tr>
<tr>
<td>4</td>
<td>$14,924.07</td>
<td>65.00%</td>
<td>$619.36</td>
<td>4.15%</td>
</tr>
<tr>
<td>5</td>
<td>$24,624.72</td>
<td>65.00%</td>
<td>$1,344.12</td>
<td>5.46%</td>
</tr>
<tr>
<td>6</td>
<td>$37,565.02</td>
<td>52.55%</td>
<td>$2,541.92</td>
<td>6.77%</td>
</tr>
<tr>
<td>7</td>
<td>$52,628.59</td>
<td>40.10%</td>
<td>$4,249.78</td>
<td>8.08%</td>
</tr>
<tr>
<td>8</td>
<td>$67,180.39</td>
<td>27.65%</td>
<td>$6,303.78</td>
<td>9.38%</td>
</tr>
<tr>
<td>9</td>
<td>$77,391.81</td>
<td>15.20%</td>
<td>$8,274.48</td>
<td>10.69%</td>
</tr>
<tr>
<td>10</td>
<td>$79,520.08</td>
<td>2.75%</td>
<td>$9,542.41</td>
<td>12.00%</td>
</tr>
</tbody>
</table>

Revenues in year 10 reflect successful "high end auto" company revenues (Volvo, Audi, BMW etc.)

Pre-tax operating margin in year 10 is at the 75th percentile of high end auto companies.
## Tesla: Reinvestment and Profitability

### Tesla Story: Tesla will be able to grow efficiently (sales to capital ratio) and continue to generate excess returns as it gets bigger. 

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenues</th>
<th>EBIT</th>
<th>EBIT (1-t)</th>
<th>Change in Revenues</th>
<th>Sales/Capital</th>
<th>Reinvestment</th>
<th>FCFF</th>
<th>Invested Capital</th>
<th>ROIC</th>
<th>Cost of Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>$2,013.50</td>
<td>$(21.81)</td>
<td>$(21.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,045.00</td>
<td>-2.09%</td>
<td>8.74%</td>
</tr>
<tr>
<td>1</td>
<td>$3,322.28</td>
<td>$7.48</td>
<td>$7.48</td>
<td>$1,308.78</td>
<td>1.55</td>
<td>$844.37</td>
<td>$(836.89)</td>
<td>$1,889.37</td>
<td>0.40%</td>
<td>8.74%</td>
</tr>
<tr>
<td>2</td>
<td>$5,481.75</td>
<td>$84.06</td>
<td>$84.06</td>
<td>$2,159.48</td>
<td>1.55</td>
<td>$1,393.21</td>
<td>$(1,309.15)</td>
<td>$3,282.58</td>
<td>2.56%</td>
<td>8.74%</td>
</tr>
<tr>
<td>3</td>
<td>$9,044.89</td>
<td>$257.03</td>
<td>$254.44</td>
<td>$3,563.14</td>
<td>1.55</td>
<td>$2,298.80</td>
<td>$(2,044.36)</td>
<td>$5,581.38</td>
<td>4.56%</td>
<td>8.74%</td>
</tr>
<tr>
<td>4</td>
<td>$14,924.07</td>
<td>$619.36</td>
<td>$402.58</td>
<td>$5,879.18</td>
<td>1.55</td>
<td>$3,793.02</td>
<td>$(3,390.44)</td>
<td>$9,374.40</td>
<td>4.29%</td>
<td>8.74%</td>
</tr>
<tr>
<td>5</td>
<td>$24,624.72</td>
<td>$1,344.12</td>
<td>$873.68</td>
<td>$9,700.65</td>
<td>1.55</td>
<td>$6,258.48</td>
<td>$(5,384.81)</td>
<td>$15,632.89</td>
<td>5.59%</td>
<td>8.59%</td>
</tr>
<tr>
<td>6</td>
<td>$37,565.02</td>
<td>$2,541.92</td>
<td>$1,652.25</td>
<td>$12,940.29</td>
<td>1.55</td>
<td>$8,348.58</td>
<td>$(6,696.33)</td>
<td>$23,981.46</td>
<td>6.89%</td>
<td>8.44%</td>
</tr>
<tr>
<td>7</td>
<td>$52,628.59</td>
<td>$4,249.78</td>
<td>$2,762.36</td>
<td>$15,063.57</td>
<td>1.55</td>
<td>$9,718.43</td>
<td>$(6,956.08)</td>
<td>$33,699.89</td>
<td>8.20%</td>
<td>8.29%</td>
</tr>
<tr>
<td>8</td>
<td>$67,180.39</td>
<td>$6,303.78</td>
<td>$4,097.46</td>
<td>$14,551.80</td>
<td>1.55</td>
<td>$9,338.26</td>
<td>$(5,290.81)</td>
<td>$43,088.15</td>
<td>9.51%</td>
<td>8.15%</td>
</tr>
<tr>
<td>9</td>
<td>$77,391.81</td>
<td>$8,274.48</td>
<td>$5,378.41</td>
<td>$10,211.42</td>
<td>1.55</td>
<td>$6,588.01</td>
<td>$(1,209.60)</td>
<td>$49,676.17</td>
<td>10.83%</td>
<td>8.00%</td>
</tr>
<tr>
<td>10</td>
<td>$79,520.08</td>
<td>$9,542.41</td>
<td>$6,202.57</td>
<td>$2,128.27</td>
<td>1.55</td>
<td>$1,373.08</td>
<td>$4,829.49</td>
<td>$51,049.25</td>
<td>12.15%</td>
<td>8.00%</td>
</tr>
</tbody>
</table>

**Reinvestment = Change in Revenue/Sales to Capital**

**Sales/Capital measures revenues generated for every dollar of investment**

**Operating losses carried forward save taxes in years 3 & 4**

**Invested Capital in year t = Invested Capital in year t-1 + Reinvestment in year t**

**Cost of capital decreases as company gets larger and more profitable.**
Expected Growth Rate

Equity Earnings
- Analysts
- Fundamentals
- Historical

Operating Income
- Fundamentals
- Historical

Stable ROE
- ROE * Retention Ratio
- ROE_{t+1} * Retention Ratio + (ROE_{t+1} - ROE_t)/ROE_t

Changing ROE
- ROE * Equity Reinvestment Ratio
- ROE_{t+1} * Eq. Reinv Ratio + (ROE_{t+1} - ROE_t)/ROE_t

Positive Earnings
- Earnings per share
- Net Income

1. Revenue Growth
2. Operating Margins
3. Reinvestment Needs
CLOSURE IN VALUATION

The Big Enchilada
Getting Closure in Valuation

- A publicly traded firm potentially has an infinite life. The value is therefore the present value of cash flows forever.

\[ \text{Value} = \sum_{t=1}^{\infty} \frac{CF_t}{(1+r)^t} \]

- Since we cannot estimate cash flows forever, we estimate cash flows for a “growth period” and then estimate a terminal value, to capture the value at the end of the period:

\[ \text{Value} = \sum_{t=1}^{N} \frac{CF_t}{(1+r)^t} + \frac{\text{Terminal Value}}{(1+r)^N} \]
Ways of Estimating Terminal Value

**Terminal Value**

- **Liquidation Value**
  - Most useful when assets are separable and marketable

- **Multiple Approach**
  - Easiest approach but makes the valuation a relative valuation

- **Stable Growth Model**
  - Technically soundest, but requires that you make judgments about when the firm will grow at a stable rate which it can sustain forever, and the excess returns (if any) that it will earn during the period.

Aswath Damodaran
1. Obey the growth cap

- When a firm’s cash flows grow at a “constant” rate forever, the present value of those cash flows can be written as:
  \[ \text{Value} = \frac{\text{Expected Cash Flow Next Period}}{r - g} \]
  where,
  \[ r = \text{Discount rate (Cost of Equity or Cost of Capital)} \]
  \[ g = \text{Expected growth rate} \]

- The stable growth rate cannot exceed the growth rate of the economy but it can be set lower.
  - If you assume that the economy is composed of high growth and stable growth firms, the growth rate of the latter will probably be lower than the growth rate of the economy.
  - The stable growth rate can be negative. The terminal value will be lower and you are assuming that your firm will disappear over time.
  - If you use nominal cashflows and discount rates, the growth rate should be nominal in the currency in which the valuation is denominated.

- One simple proxy for the nominal growth rate of the economy is the riskfree rate.
Risk free Rates and Nominal GDP Growth

- **Risk free Rate** = Expected Inflation + Expected Real Interest Rate
- The real interest rate is what borrowers agree to return to lenders in real goods/services.

- **Nominal GDP Growth** = Expected Inflation + Expected Real Growth
- The real growth rate in the economy measures the expected growth in the production of goods and services.

The argument for Risk free rate = Nominal GDP growth

1. In the long term, the real growth rate cannot be lower than the real interest rate, since the growth in goods/services has to be enough to cover the promised rate.
2. In the long term, the real growth rate can be higher than the real interest rate, to compensate risk taking. However, as economies mature, the difference should get smaller and since there will be growth companies in the economy, it is prudent to assume that the extra growth comes from these companies.

<table>
<thead>
<tr>
<th>Period</th>
<th>10-Year T.Bond Rate</th>
<th>Inflation Rate</th>
<th>Real GDP Growth</th>
<th>Nominal GDP growth rate</th>
<th>Nominal GDP - T.Bond Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954-2015</td>
<td>5.93%</td>
<td>3.61%</td>
<td>3.06%</td>
<td>6.67%</td>
<td>0.74%</td>
</tr>
<tr>
<td>1954-1980</td>
<td>5.83%</td>
<td>4.49%</td>
<td>3.50%</td>
<td>7.98%</td>
<td>2.15%</td>
</tr>
<tr>
<td>1981-2008</td>
<td>6.88%</td>
<td>3.26%</td>
<td>3.04%</td>
<td>6.30%</td>
<td>-0.58%</td>
</tr>
<tr>
<td>2009-2015</td>
<td>2.57%</td>
<td>1.66%</td>
<td>1.47%</td>
<td>3.14%</td>
<td>0.57%</td>
</tr>
</tbody>
</table>
A Practical Reason for using the Risk free Rate Cap – Preserve Consistency

- You are implicitly making assumptions about nominal growth in the economy, with your risk free rate. Thus, with a low risk free rate, you are assuming low nominal growth in the economy (with low inflation and low real growth) and with a high risk free rate, a high nominal growth rate in the economy.

- If you make an explicit assumption about nominal growth in cash flows that is at odds with your implicit growth assumption in the denominator, you are being inconsistent and bias your valuations:
  - If you assume high nominal growth in the economy, with a low risk free rate, you will overvalue businesses.
  - If you assume low nominal growth rate in the economy, with a high risk free rate, you will undervalue businesses.
2. Don’t wait too long...

- Assume that you are valuing a young, high growth firm with great potential, just after its initial public offering. How long would you set your high growth period?
  a. < 5 years
  b. 5 years
  c. 10 years
  d. >10 years

- While analysts routinely assume very long high growth periods (with substantial excess returns during the periods), the evidence suggests that they are much too optimistic. Most growth firms have difficulty sustaining their growth for long periods, especially while earning excess returns.

Aswath Damodaran
Recapping a key lesson about growth, it is not growth per se that creates value but growth with excess returns. For growth firms to continue to generate value creating growth, they have to be able to keep the competition at bay.

Proposition 1: The stronger and more sustainable the competitive advantages, the longer a growth company can sustain “value creating” growth.

Proposition 2: Growth companies with strong and sustainable competitive advantages are rare.
3. Don’t forget that growth has to be earned..

In the section on expected growth, we laid out the fundamental equation for growth:

\[
\text{Growth rate} = \text{Reinvestment Rate} \times \text{Return on invested capital} + \text{Growth rate from improved efficiency}
\]

In stable growth, you cannot count on efficiency delivering growth and you have to reinvest to deliver the growth rate that you have forecast.

Consequently, your reinvestment rate in stable growth will be a function of your stable growth rate and what you believe the firm will earn as a return on capital in perpetuity:

- Reinvestment Rate = Stable growth rate/ Stable period ROC = \( \frac{g}{\text{ROC}} \)

Your terminal value equation can then be rewritten as:

\[
\text{Terminal Value in year } n = \frac{\text{EBIT}_{n+1} \times (1-t)(1- \frac{g}{\text{ROC}})}{(\text{Cost of Capital} - g)}
\]
## The Big Assumption

<table>
<thead>
<tr>
<th>Growth rate forever</th>
<th>Return on capital in perpetuity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>0.0%</td>
<td>$1,000</td>
</tr>
<tr>
<td>0.5%</td>
<td>$965</td>
</tr>
<tr>
<td>1.0%</td>
<td>$926</td>
</tr>
<tr>
<td>1.5%</td>
<td>$882</td>
</tr>
<tr>
<td>2.0%</td>
<td>$833</td>
</tr>
<tr>
<td>2.5%</td>
<td>$778</td>
</tr>
<tr>
<td>3.0%</td>
<td>$714</td>
</tr>
</tbody>
</table>

Terminal value for a firm with expected after-tax operating income of $100 million in year n+1 and a cost of capital of 10%.

Aswath Damodaran
There are some (McKinsey, for instance) who argue that the return on capital should always be equal to cost of capital in stable growth.

But excess returns seem to persist for very long time periods.
And don’t fall for sleight of hand...

- A typical assumption in many DCF valuations, when it comes to stable growth, is that capital expenditures offset depreciation and there are no working capital needs. Stable growth firms, we are told, just have to make maintenance cap ex (replacing existing assets) to deliver growth. If you make this assumption, what expected growth rate can you use in your terminal value computation?

- What if the stable growth rate = inflation rate? Is it okay to make this assumption then?
4. Be internally consistent

- Risk and costs of equity and capital: Stable growth firms tend to
  - Have betas closer to one
  - Have debt ratios closer to industry averages (or mature company averages)
  - Country risk premiums (especially in emerging markets should evolve over time)

- The excess returns at stable growth firms should approach (or become) zero. ROC -> Cost of capital and ROE -> Cost of equity

- The reinvestment needs and dividend payout ratios should reflect the lower growth and excess returns:
  - Stable period payout ratio = 1 - g/ ROE
  - Stable period reinvestment rate = g/ ROC