The essence of intrinsic value

- In intrinsic valuation, you value an asset based upon its fundamentals (or intrinsic characteristics).
- For cash flow generating assets, the intrinsic value will be a function of the magnitude of the expected cash flows on the asset over its lifetime and the uncertainty about receiving those cash flows.
- Discounted cash flow valuation is a tool for estimating intrinsic value, where the expected value of an asset is written as the present value of the expected cash flows on the asset, with either the cash flows or the discount rate adjusted to reflect the risk.

Aswath Damodaran
The two faces of discounted cash flow valuation

- The value of a risky asset can be estimated by discounting the expected cash flows on the asset over its life at a risk-adjusted discount rate:

\[
\text{Value of asset} = \frac{E(CF_1)}{(1+r)} + \frac{E(CF_2)}{(1+r)^2} + \frac{E(CF_3)}{(1+r)^3} + \cdots + \frac{E(CF_n)}{(1+r)^n}
\]

where the asset has an n-year life, \(E(CF_t)\) is the expected cash flow in period \(t\) and \(r\) is a discount rate that reflects the risk of the cash flows.

- Alternatively, we can replace the expected cash flows with the guaranteed cash flows we would have accepted as an alternative (certainty equivalents) and discount these at the risk-free rate:

\[
\text{Value of asset} = \frac{CE(CF_1)}{(1+r_f)} + \frac{CE(CF_2)}{(1+r_f)^2} + \frac{CE(CF_3)}{(1+r_f)^3} + \cdots + \frac{CE(CF_n)}{(1+r_f)^n}
\]

where \(CE(CF_t)\) is the certainty equivalent of \(E(CF_t)\) and \(r_f\) is the risk-free rate.
Risk Adjusted Value: Two Basic Propositions

- The value of an asset is the risk-adjusted present value of the cash flows:

\[
\text{Value of asset} = \frac{E(CF_1)}{(1 + r)} + \frac{E(CF_2)}{(1 + r)^2} + \frac{E(CF_3)}{(1 + r)^3} + \ldots + \frac{E(CF_n)}{(1 + r)^n}
\]

\[
\text{Value of asset} = \frac{CE(CF_1)}{(1 + r_f)} + \frac{CE(CF_2)}{(1 + r_f)^2} + \frac{CE(CF_3)}{(1 + r_f)^3} + \ldots + \frac{CE(CF_n)}{(1 + r_f)^n}
\]

1. The “IT” proposition: If IT does not affect the expected cash flows or the riskiness of the cash flows, IT cannot affect value.
2. The “DUH” proposition: For an asset to have value, the expected cash flows have to be positive some time over the life of the asset.
3. The “DON’T FREAK OUT” proposition: Assets that generate cash flows early in their life will be worth more than assets that generate cash flows later; the latter may however have greater growth and higher cash flows to compensate.