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CHAPTER 4 

HOW DO WE MEASURE RISK? 
 If you accept the argument that risk matters and that it affects how managers and 

investors make decisions, it follows logically that measuring risk is a critical first step 

towards managing it. In this chapter, we look at how risk measures have evolved over 

time, from a fatalistic acceptance of bad outcomes to probabilistic measures that allow us 

to begin getting a handle on risk, and the logical extension of these measures into 

insurance. We then consider how the advent and growth of markets for financial assets 

has influenced the development of risk measures. Finally, we build on modern portfolio 

theory to derive unique measures of risk and explain why they might be not in 

accordance with probabilistic risk measures.  

Fate and Divine Providence 
 Risk and uncertainty have been part and parcel of human activity since its 

beginnings, but they have not always been labeled as such. For much of recorded time, 

events with negative consequences were attributed to divine providence or to the 

supernatural. The responses to risk under these circumstances were prayer, sacrifice 

(often of innocents) and an acceptance of whatever fate meted out. If the Gods intervened 

on our behalf, we got positive outcomes and if they did not, we suffered; sacrifice, on the 

other hand, appeased the spirits that caused bad outcomes. No measure of risk was 

therefore considered necessary because everything that happened was pre-destined and 

driven by forces outside our control. 

This is not to suggest that the ancient civilizations, be they Greek, Roman or 

Chinese, were completely unaware of probabilities and the quantification of risk. Games 

of chance were common in those times and the players of those games must have 

recognized that there was an order to the uncertainty.1 As Peter Bernstein notes in his 

splendid book on the history of risk, it is a mystery why the Greeks, with their 

considerable skills at geometry and numbers, never seriously attempted to measure the 
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likelihood of uncertain events, be they storms or droughts, occurring, turning instead to 

priests and fortune tellers.2 

 Notwithstanding the advances over the last few centuries and our shift to more 

modern, sophisticated ways of analyzing uncertainty, the belief that powerful forces 

beyond our reach shape our destinies is never far below the surface. The same traders 

who use sophisticated computer models to measure risk consult their astrological charts 

and rediscover religion when confronted with the possibility of large losses. 

Estimating Probabilities: The First Step to Quantifying Risk 
 Given the focus on fate and divine providence that characterized the way we 

thought about risk until the Middle Ages, it is ironic then that it was an Italian monk, who 

initiated the discussion of risk measures by posing a puzzle in 1494 that befuddled people 

for almost two centuries.  The solution to his puzzle and subsequent developments laid 

the foundations for modern risk measures. 

 Luca Pacioli, a monk in the Franciscan order, was a man of many talents. He is 

credited with inventing double entry bookkeeping and teaching Leonardo DaVinci 

mathematics. He also wrote a book on mathematics, Summa de Arithmetica, that 

summarized all the knowledge in mathematics at that point in time. In the book, he also 

presented a puzzle that challenged mathematicians of the time. Assume, he said, that two 

gamblers are playing a best of five dice game and are interrupted after three games, with 

one gambler leading two to one. What is the fairest way to split the pot between the two 

gamblers, assuming that the game cannot be resumed but taking into account the state of 

the game when it was interrupted? 

 With the hindsight of several centuries, the answer may seem simple but we have 

to remember that the notion of making predictions or estimating probabilities had not 

developed yet. The first steps towards solving the Pacioli Puzzle came in the early part of 

                                                                                                                                            
1 Chances are…. Adventures in Probability, 2006, Kaplan, M. and E. Kaplan, Viking Books, New York. 
The authors note that dice litter ancient Roman campsites and that the citizens of the day played a variant of 
craps using either dice or knucklebones of sheep. 
2 Much of the history recounted in this chapter is stated much more lucidly and in greater detail by Peter 
Bernstein in his books “Against the Gods: The Remarkable Story of Risk” (1996) and “Capital Ideas: The 
Improbable Origins of Modern Wall Street (1992). The former explains the evolution of our thinking on 
risk through the ages whereas the latter examines the development of modern portfolio theory. 
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the sixteenth century when an Italian doctor and gambler, Girolamo Cardano, estimated 

the likelihood of different outcomes of rolling a dice. His observations were contained in 

a book titled “Books on the Game of Chance”, where he estimated not only the likelihood 

of rolling a specific number on a dice (1/6), but also the likelihood of obtaining values on 

two consecutive rolls; he, for instance, estimated the probability of rolling two ones in a 

row to be 1/36. Galileo, taking a break from discovering the galaxies, came to the same 

conclusions for his patron, the Grand Duke of Tuscany, but did not go much further than 

explaining the roll of the dice.  

 It was not until 1654 that the Pacioli puzzle was fully solved when Blaise Pascal 

and Pierre de Fermat exchanged a series of five letters on the puzzle.  In these letters, 

Pascal and Fermat considered all the possible outcomes to the Pacioli puzzle and noted 

that with a fair dice, the gambler who was ahead two games to one in a best-of-five dice 

game would prevail three times out of four, if the game were completed, and was thus 

entitled to three quarters of the pot. In the process, they established the foundations of 

probabilities and their usefulness not just in explaining the past but also in predicting the 

future. It was in response to this challenge that Pascal developed his triangle of numbers 

for equal odds games, shown in figure 4.1:3 

                                                
3 It should be noted that Chinese mathematicians constructed the same triangle five hundred years before 
Pascal and are seldom credited for the discovery. 
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Figure 4.1: Pascal’s Triangle 

 
Pascal’s triangle can be used to compute the likelihood of any event with even odds 

occurring. Consider, for instance, the odds that a couple expecting their first child will 

have a boy; the answer, with even odds, is one-half and is in the second line of Pascal’s 

triangle. If they have two children, what are the odds of them having two boys, or a boy 

and a girl or two girls? The answer is in the second line, with the odds being ¼ on the 

first and the third combinations and ½ on the second. In general, Pascal’s triangle 

provides the number of possible combination if an even-odds event is repeated a fixed 

number of times; if repeated N times, adding the numbers in the N+1 row and dividing 

each number by this total should yield the probabilities. Thus, the couple that has six 

children can compute the probabilities of the various outcomes by going to the seventh 

row and adding up the numbers (which yields 64) and dividing each number by the total. 

There is only a 1/64 chance that this couple will have six boys (or six girls), a 6/64 

chance of having five boys and a girl (or five girls and a boy) and so on. 

Sampling, The Normal Distributions and Updating 
 Pascal and Fermat fired the opening volley in the discussion of probabilities with 

their solution to the Pacioli Puzzle, but the muscle power for using probabilities was 
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provided by Jacob Bernoulli, with his discovery of the law of large numbers. Bernoulli 

proved that a random sampling of items from a population has the same characteristics, 

on average, as the population.4 He used coin flips to illustrate his point by noting that the 

proportion of heads (and tails) approached 50% as the number of coin tosses increased. In 

the process, he laid the foundation for generalizing population properties from samples, a 

practice that now permeates both the social and economic sciences.  

 The introduction of the normal distribution by Abraham de Moivre, an English 

mathematician of French extraction, in 1738 as an approximation for binomial 

distributions as sample sizes became larger, provided researchers with a critical tool for 

linking sample statistics with probability statements. 5 Figure 4.2 provides a picture of the 

normal distribution. 

Figure 4.2: Normal Distribution 

 
                                                
4 Since Bernoulli’s exposition of the law of large numbers, two variants of it have developed in the 
statistical literature. The weak law of large numbers states that average of a sequence of uncorrelated 
random numbers drawn from a distribution with the same mean and standard deviation will converge on 
the population average. The strong law of large numbers extends this formulation to a set of random 
variables that are independent and identically distributed (i.i.d) 
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The bell curve, that characterizes the normal distribution, was refined by other 

mathematicians, including Laplace and Gauss, and the distribution is still referred to as 

the Gaussian distribution. One of the advantages of the normal distribution is that it can 

be described with just two parameters – the mean and the standard deviation – and allows 

us to make probabilistic statements about sampling averages. In the normal distribution, 

approximately 68% of the distribution in within one standard deviation of the mean, 95% 

is within two standard deviations and 98% within three standard deviations. In fact, the 

distribution of a sum of independent variables approaches a normal distribution, which is 

the basis for the central limit theorem and allows us to use the normal distribution as an 

approximation for other distributions (such as the binomial).  

 In 1763, Reverend Thomas Bayes published a simple way of updating existing 

beliefs in the light of new evidence. In Bayesian statistics, the existing beliefs are called 

prior probabilities and the revised values after considering the new evidence are called 

posterior or conditional probabilities.6 Bayes provided a powerful tool for researchers 

who wanted to use probabilities to assess the likelihood of negative outcomes, and to 

update these probabilities as events unfolded.  In addition, Bayes’ rule allows us to start 

with subjective judgments about the likelihood of events occurring and to modify these 

judgments as new data or information is made available about these events. 

 In summary, these developments allowed researchers to see that they could extend 

the practice of estimating probabilities from simple equal-odds events such as rolling a 

dice to any events that had uncertainty associated with it. The law of large numbers 

showed that sampling means could be used to approximate population averages, with the 

precision increasing with sample size. The normal distribution allows us to make 

probability statements about the sample mean. Finally, Bayes’ rule allows us to estimate 

probabilities and revise them based on new sampling data. 

                                                                                                                                            
5 De Moivre, A., 1738, Doctrine of Chances. 
6 Bayes, Rev. T., "An Essay Toward Solving a Problem in the Doctrine of Chances", Philos. Trans. R. 
Soc. London 53, pp. 370-418 (1763); reprinted in Biometrika 45, pp. 293-315 (1958). 
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The Use of Data: Life Tables and Estimates 
 The work done on probability, sampling theory and the normal distribution 

provided a logical foundation for the analysis of raw data. In 1662, John Graunt created 

one of the first mortality tables by counting for every one hundred children born in 

London, each year from 1603 to 1661, how many were still living. In the course of 

constructing the table, Graunt used not only refined the use of statistical tools and 

measures with large samples but also considered ways of dealing with data errors. He 

estimated that while 64 out of every 100 made it age 6 alive, only 1 in 100 survived to be 

76. In an interesting aside, Graunt estimated the population of London in 1663 to be only 

384,000, well below the then prevailing estimate of six to seven million. He was 

eventually proved right, and London’s population did not exceed 6 million until three 

centuries later. In 1693, Edmund Halley, the British mathematician, constructed the first 

life table from observations and also devised a method for valuing life annuities. He 

pointed out that the government, that was selling life annuities to citizens at that time, 

was pricing them too low and was not setting the price independently of the age of the 

annuitant.  

Actuarial risk measures have become more sophisticated over time, and draw 

heavily on advances in statistics and data analysis, but the foundations still lies in the 

work done by Graunt and Halley. Using historical data, actuaries estimate the likelihood 

of events occurring – from hurricanes in Florida to deaths from cancer – and the 

consequent losses. 

The Insurance View of Risk 
 As long as risk has existed, people have been trying to protect themselves against 

its consequences. As early as 1000 BC, the Babylonians developed a system where 

merchants who borrowed money to fund shipments could pay an extra amount to cancel 

the loan if the shipment was stolen. The Greeks and the Romans initiated life insurance 

with “benevolent societies” which cared for families of society members, if they died. 

However, the development of the insurance business was stymied by the absence of ways 

of measuring risk exposure. The advances in assessing probabilities and the subsequent 

development of statistical measures of risk laid the basis for the modern insurance 
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business. In the aftermath of the great fire of London in 1666, Nicholas Barbon opened 

“The Fire Office”, the first fire insurance company to insure brick homes. Lloyd’s of 

London became the first the first large company to offer insurance to ship owners. 

 Insurance is offered when the timing or occurrence of a loss is unpredictable, but 

the likelihood and magnitude of the loss are relatively predictable. It is in the latter 

pursuit that probabilities and statistics contributed mightily. Consider, for instance, how a 

company can insure your house against fire. Historical data on fires can be used to assess 

the likelihood that your house will catch fire and the extent of the losses, if a fire occurs. 

Thus, the insurance company can get a sense of the expected loss from the fire and 

charge an insurance premium that exceeds that cost, thus earning a profit. By insuring a 

large number of houses against fire, they are drawing on Bernoulli’s law of large 

numbers to ensure that their profits exceed the expected losses over time.  

 Even large, well-funded insurance companies have to worry, though, about 

catastrophes so large that they will be unable to meet their obligations. Katrina, one of the 

most destructive hurricanes in memory, destroyed much of New Orleans in 2005 and left 

two states, Louisiana and Mississipi, in complete devastation; the total cost of damages 

was in excess of $ 50 billion. Insurance companies paid out billions of dollars in claims, 

but none of the firms were put in serious financial jeopardy because of the practice of 

reinsuring, where insurance companies reduce their exposure to catastrophic risk through 

reinsurance. 

 Since insurers are concerned primarily about losses (and covering those losses), 

insurance measures of risk are almost always focused on the downside. Thus, a company 

that insures merchant ships will measure risk in terms of the likelihood of ships and cargo 

being damaged and the loss that accrues from the damage. The potential for upside that 

exists has little or no relevance to the insurer since he does not share in it. 

Financial Assets and the Advent of Statistical Risk Measures 
 As stock and bond markets developed around the world in the nineteenth century, 

investors started looking for richer measures of risk. In particular, since investors in 

financial assets share in both upside and downside, the notion of risk primarily as a loss 
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function (the insurance view) was replaced by a sense that risk could be a source of 

profit.  

 There was little access to information and few ways of processing even that 

limited information in the eighteenth and nineteenth centuries. Not surprisingly, the risk 

measures used were qualitative and broad. Investors in the financial markets during that 

period defined risk in terms of stability of income from their investments in the long term 

and capital preservation. Thus, perpetual British government bonds called Consols, that 

offered fixed coupons forever were considered close to risk free, and a fixed rate long 

term bond was considered preferable to a shorter term bond with a higher rate. In the risk 

hierarchy of that period, long term government bonds ranked as safest, followed by 

corporate bonds and stocks paying dividends and at the bottom were non-dividend paying 

stocks, a ranking that has not changed much since. 

 Given that there were few quantitative measures of risk for financial assets, how 

did investors measure and manage risk? One way was to treat entire groups of 

investments as sharing the same risk level; thus stocks were categorized as risky and 

inappropriate investments for risk averse investors, no matter what their dividend yield. 

The other was to categorize investments based upon how much information was available 

about the entity issuing it. Thus, equity issued by a well-established company with a solid 

reputation was considered safer than equity issued by a more recently formed entity about 

which less was known. In response, companies started providing more data on operations 

and making them available to potential investors.  

 By the early part of the twentieth century, services were already starting to collect 

return and price data on individual securities and computing basic statistics such as the 

expected return and standard deviation in returns. For instance, the Financial Review of 

Reviews, a British publication, examined portfolios of ten securities including bonds, 

preferred stock and ordinary stock in 1909, and measured the volatility of each security 

using prices over the prior ten years. In fact, they made an argument for diversification by 

estimating the impact of correlation on their hypothetical portfolios. (Appendix 1 

includes the table from the publication). Nine years previously, Louis Bachelier, a post-

graduate student of mathematics at the Sorbonne, examined the behavior of stock and 

option prices over time in a remarkable thesis. He noted that there was little correlation 
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between the price change in one period and the price change in the next, thus laying the 

foundation for the random walk and efficient market hypothesis, though they were not 

fleshed out until almost sixty years later.7 

 At about the same time, the access to and the reliability of financial reports from 

corporations were improving and analysts were constructing risk measures that were 

based upon accounting numbers. Ratios of profitability (such as margin and return on 

capital) and financial leverage (debt to capital) were used to measure risk. By 1915, 

services including the Standard Statistics Bureau (the precursor to Standard and Poor’s), 

Fitch and Moody’s were processing accounting information to provide bond ratings as 

measures of credit risk in companies. Similar measures were slower to evolve for equities 

but stock rating services were beginning to make their presence felt well before the 

Second World War. While these services did not exhibit any consensus on the right way 

to measure risk, the risk measures drew on both price volatility and accounting 

information. 

In his first edition of Security Analysis in 1934, Ben Graham argued against 

measures of risk based upon past prices (such as volatility), noting that price declines can 

be temporary and not reflective of a company’s true value. He argued that risk comes 

from paying too high a price for a security, relative to its value and that investors should 

maintain a “margin of safety” by buying securities for less than their true worth.8 This is 

an argument that value investors from the Graham school, including Warren Buffett, 

continue to make to this day. 

 By 1950, investors in financial markets were using measures of risk based upon 

past prices and accounting information, in conjunction with broad risk categories, based 

upon security type and issuer reputation, to make judgments about risk. There was, 

                                                
7 Bachelier, L., 1900, Theorie De La Speculation, Annales Scientifiques de l’E´cole Normale 
Supe´rieure,1900, pp.21–86. For an analysis of this paper’s contribution to mathematical finance, see 
Courtault, J.M., Y. Kabanov, B. Bru and P. Crepel, 2000, Louis Bachelier: On the Centenary of the Theorie 
De La Speculation, Mathematical Finance, v10, 341-350. 
8 Graham, B., 1949, The Intelligent Investor; Graham, B. and D. Dodd, 1934, Security Analysis, Reprint by 
McGraw Hill. In “Intelligent Investor”, Graham proposed to measure the margin of safety by looking at the 
difference between the earnings yield on a stock (Earnings per share/ Market price) to the treasury bond 
rate; the larger the difference (with the former exceeding the latter), the greater the margin for safety. 
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however, no consensus on how best to measure risk and the exact relationship between 

risk and expected return. 

The Markowitz Revolution 
 The belief that diversification was beneficial to investors was already well in 

place before Harry Markowitz turned his attention to it in 1952. In fact, our earlier 

excerpt from the Financial Review of Reviews from 1909 used correlations between 

securities to make the argument that investors should spread their bets and that a 

diversified portfolio would be less risky than investing in an individual security, while 

generating similar returns. However, Markowitz changed the way we think about risk by 

linking the risk of a portfolio to the co-movement between individual assets in that 

portfolio. 

Efficient Portfolios 
 As a young graduate student at the University of Chicago in the 1940s, Harry 

Markowitz was influenced by the work done by Von Neumann, Friedman and Savage on 

uncertainty. In describing how he came up with the idea that gave rise to modern 

portfolio theory, Markowitz explains that he was reading John Burr Williams “Theory of 

Investment Value”, the book that first put forth the idea that the value of a stock is the 

present value of its expected dividends.9 He noted that if the value of a stock is the 

present value of its expected dividends and an investor were intent on only maximizing 

returns, he or she would invest in the one stock that had the highest expected dividends, a 

practice that was clearly at odds with both practice and theory at that time, which 

recommended investing in diversified portfolios. Investors, he reasoned, must diversify 

because they care about risk, and the risk of a diversified portfolio must therefore be 

lower than the risk of the individual securities that went into it. His key insight was that 

the variance of a portfolio could be written as a function not only of how much was 

invested in each security and the variances of the individual securities but also of the 

correlation between the securities. By explicitly relating the variance of a portfolio to the 
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covariances between individual securities, Markowitz not only put into concrete form 

what had been conventional wisdom for decades but also formulated a process by which 

investors could generate optimally diversified portfolios, i.e., portfolios that would 

maximize returns for any given level of risk (or minimize risk for any given level of 

return). In his thesis, he derived the set of optimal portfolios for different levels of risk 

and called it the efficient frontier.10 He refined the process in a subsequent book that he 

wrote while he worked at the RAND corporation.11 

The Mean-Variance Framework 
 The Markowitz approach, while powerful and simple, boils investor choices down 

to two dimensions. The “good” dimension is captured in the expected return on an 

investment and the “bad” dimension is the variance or volatility in that return. In effect, 

the approach assumes that all risk is captured in the variance of returns on an investment 

and that all other risk measures, including the accounting ratios and the Graham margin 

of safety, are redundant. There are two ways in which you can justify the mean-variance 

focus: one is to assume that returns are normally distributed and the other is to assume 

that investors’ utility functions push them to focus on just expected return and variance. 

 Consider first the “normal distribution” assumption. As we noted earlier in this 

chapter, the normal distribution is not only symmetric but can be characterized by just the 

mean and the variance.12 If returns were normally distributed, it follows then that the only 

two choice variables for investors would be the expected returns and standard deviations, 

thus providing the basis for the mean variance framework. The problem with this 

assumption is that returns on most investments cannot be normally distributed. The worst 

outcome you can have when investing in a stock is to lose your entire investment, 

translating into a return of -100% (and not -∞ as required in a normal distribution).  

                                                                                                                                            
9 See the Markowitz autobiography for the Nobel committee. It can be accessed online at 
http://nobelprize.org/economics/laureates/1990/markowitz-autobio.html.  
10 Markowitz, H.M. 1952. “Portfolio Selection,” The Journal of Finance, 7(l): 77-91. 
11 Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investments. New York: Wiley 
(Yale University Press, 1970, Basil Blackwell, 1991). 
12 Portfolios of assets that each exhibit normally distributed returns will also be normally distributed. 
Lognormally distributed returns can also be parameterized with the mean and the variance, but portfolios of 
assets exhibiting lognormal returns may not exhibit lognormality. 
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 As for the “utility distribution” argument, consider the quadratic utility function, 

where utility is written as follows:  

 U(W) = a + bW – cW2 

The quadratic utility function is graphed out in figure 4.3: 

Figure 4.3: Quadratic Utility Function 

 
 

Investors with quadratic utility functions care about only the level of their wealth and the 

variance in that level and thus have a mean-variance focus when picking investments. 

While assuming a quadratic utility function may be convenient, it is not a plausible 

measure of investor utility for three reasons. The first is that it assumes that investors are 

equally averse to deviations of wealth below the mean as they are to deviations above the 

mean. The second is that individuals with quadratic utility functions exhibit decreasing 

absolute risk aversion, i.e., individuals invest less of their wealth (in absolute terms) in 

risky assets as they become wealthier. Finally, there are ranges of wealth where investors 

actually prefer less wealth to more wealth; the marginal utility of wealth becomes 

negative.  
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 Since both the normal distribution and quadratic utility assumptions can only be 

justified with contorted reasoning, how then how do you defend the mean-variance 

approach? The many supporters of the approach argue that the decisions based upon 

decisions based upon the mean and the variance come reasonably close to the optimum 

with utility functions other than the quadratic. They also rationalize the use of the normal 

distribution by pointing out that returns may be log-normally distributed (in which case 

the log of the returns should be normally distributed) and that the returns on portfolios 

(rather than individual stocks), especially over shorter time periods, are more symmetric 

and thus closer to normality. Ultimately, their main argument is that what is lost in 

precision (in terms of using a more realistic model that looks at more than expected 

returns and variances) is gained in simplicity.13  

Implications for Risk Assessment 
 If we accept the mean-variance framework, the implications for risk measurement 

are significant.  

• The argument for diversification becomes irrefutable. A portfolio of assets will 

almost always generate a higher return, for any given level of variance, than any 

single asset. Investors should diversity even if they have special access to information 

and there are transactions costs, though the extent of diversification may be limited.14 

• In general, the risk of an asset can be measured by the risk it adds on to the portfolio 

that it becomes part of and in particular, by how much it increases the variance of the 

portfolio to which it is added. Thus, the key component determining asset risk will 

not be its volatility per se, but how the asset price co-moves with the portfolio. An 

asset that is extremely volatile but moves independently of the rest of the assets in a 

portfolio will add little or even no risk to the portfolio. Mathematically, the 

                                                
13 Markowitz, defending the quadratic utility assumptions, notes that focusing on just the mean and the 
variance makes sense for changes  
14 The only exception is if the information is perfect, i.e., investors have complete certainty about what will 
happen to a stock or investment. In that case, they can invest their wealth in that individual asset and it will 
be riskfree. In the real world, inside information gives you an edge over other investors but does not bestow 
its possessor with guaranteed profits. Investors with such information would be better served spreading 
their wealth over multiple stocks on which they have privileged information rather than just one. 
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covariance between the asset and the other assets in the portfolio becomes the 

dominant risk measure, rather than its variance. 

• The other parameters of an investment, such as the potential for large payoffs and the 

likelihood of price jumps, become irrelevant once they have been factored into the 

variance computation. 

Whether one accepts the premise of the mean-variance framework or not, its introduction 

changed the way we think about risk from one where the risk of individual assets was 

assessed independently to one where asset risk is assessed relative to a portfolio of which 

the asset is a part. 

Introducing the Riskless Asset – The Capital Asset Pricing Model (CAPM) arrives 
 The revolution initiated by Harry Markowitz was carried to its logical conclusion 

by John Lintner, Jack Treynor and Bill Sharpe, with their development of the capital asset 

pricing model (CAPM).15 Sharpe and Linter added a riskless asset to the mix and 

concluded that there existed a superior alternative to investors at every risk level, created 

by combining the riskless asset with one specific portfolio on the efficient frontier. 

Combinations of the riskless asset and the one super-efficient portfolio generate higher 

expected returns for every given level of risk than holding just a portfolio of risky assets. 

(Appendix 2 contains a more complete proof of this conclusion) For those investors who 

desire less risk than that embedded in the market portfolio, this translates into investing a 

portion of their wealth in the super-efficient portfolio and the rest in the riskless assets. 

Investors who want to take more risk are assumed to borrow at the riskless rate and invest 

that money in the super-efficient portfolio. If investors follow this dictum, all investors 

should hold the one super-efficient portfolio, which should be supremely diversified, i.e., 

it should include every traded asset in the market, held in proportion to its market value. 

Thus, it is termed the market portfolio. 

 To reach this result, the original version of the model did assume that there were 

no transactions costs or taxes and that investors had identical information about assets 

                                                
15 Sharpe, William F., 1961,. Capital asset prices: A theory of market equilibrium under conditions of risk, 
Journal of Finance, 19 (3), 425-442; Lintner, J., 1965 The valuation of risk assets and the selection of risky 
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(and thus shared the same estimates for the expected returns, standard deviations and 

correlation across assets). In addition, the model assumed that all investors shared a 

single period time horizon and that they could borrow and invest at the riskfree rate. 

Intuitively, the model eliminates any rationale for holding back on diversification. After 

all, without transactions costs and differential information, why settle for any portfolio 

which is less than fully diversified? Consequently, any investor who holds a portfolio 

other than the market portfolio is not fully diversified and bears the related cost with no 

offsetting benefit. 

 If we accept the assumptions (unrealistic though they may seem) of the capital 

asset pricing model, the risk of an individual asset becomes the risk added on to the 

market portfolio and can be measured statistically as follows: 

Risk of an asset = 

! 

Covariance of asset with the market portfolio

Variance of the maraket portfolio
=  Asset Beta  

Thus, the CAPM extends the Markowitz insight about risk added to a portfolio by an 

individual asset to the special case where all investors hold the same fully diversified 

market portfolio. Thus, the risk of any asset is a function of how it covaries with the 

market portfolio. Dividing the covariance of every asset by the market portfolio to the 

market variance allows for the scaling of betas around one; an average risk investment 

has a beta around one, whereas investments with above average risk and below average 

risk have betas greater than and less than one respectively. 

 In closing, though, accepting the CAPM requires us to accept the assumptions that 

the model makes about transactions costs and information but also the underlying 

assumptions of the mean-variance framework. Notwithstanding its many critics, whose 

views we will examine in the next two sections, the widespread acceptance of the model 

and its survival as the default model for risk to this day is testimony to its intuitive appeal 

and simplicity. 

                                                                                                                                            
investments in stock portfolios and capital budgets, Review of Economics and Statistics, 47: 13-37; 
Treynor, Jack (1961). Towards a theory of market value of risky assets, unpublished manuscript. 



 17 

Mean Variance Challenged 
 From its very beginnings, the mean variance framework has been controversial. 

While there have been many who have challenged its applicability, we will consider these 

challenges in three groups. The first group argues that stock prices, in particular, and 

investment returns, in general, exhibit too many large values to be drawn from a normal 

distribution. They argue that the “fat tails” on stock price distributions lend themselves 

better to a class of distributions, called power law distributions, which exhibit infinite 

variance and long periods of price dependence. The second group takes issue with the 

symmetry of the normal distribution and argues for measures that incorporate the 

asymmetry observed in actual return distributions into risk measures. The third group 

posits that distributions that allow for price jumps are more realistic and that risk 

measures should consider the likelihood and magnitude of price jumps. 

Fat Tails and Power Law Distributions 
Benoit Mandelbrot, a mathematician who also did pioneering work on the 

behavior of stock prices, was one of those who took issue with the use of normal and 

lognormal distributions.16 He argued, based on his observation of stock and real asset 

prices, that a power-law distribution characterized them better.17 In a power-law 

distribution, the relationship between two variables, Y and X can be written as follows: 

Y = αk 

In this equation, α is a constant (constant of proportionality) and k is the power law 

exponent. Mandelbrots key point was that the normal and log normal distributions were 

best suited for series that exhibited mild and well behaved randomness, whereas power 

law distributions were more suited for series which exhibited large movements and what 

                                                
16 Mandelbrot, B., 1961, The Variation of Certain Speculative Prices, Journal of Business, v34, 394-419.  
17 H.E. Hurst, a British civil servant, is credited with bringing the power law distribution into popular 
usage. Faced with the task of protecting Egypt against floods on the Nile rive, he did an exhaustive analysis 
of the frequency of high and low water marks at dozens of other rivers around the world. He found that the 
range widened far more than would be predicted by the normal distribution. In fact, he devised a measure, 
called the Hurst exponent, to capture the widening of the range; the Hurst exponent which has a value of 
0.5 for the normal distribution had a value of 0.73 for the rivers that he studied. In intuitive terms, his 
findings suggested that there were extended periods of rainfall that were better-than-expected and worse-
than-expected that caused the widening of the ranges.  Mandelbrot’s awareness of this research allowed 
him to bring the same thinking into his analysis of cotton prices on the Commodity Exchange. 
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he termed “wild randomness”. Wild randomness occurs when a single observation can 

affect the population in a disproportionate way. Stock and commodity prices, with their 

long periods of relatively small movements, punctuated by wild swings in both 

directions, seem to fit better into the “wild randomness” group. 

 What are the consequences for risk measures? If asset prices follow power law 

distributions, the standard deviation or volatility ceases to be a good risk measure and a 

good basis for computing probabilities. Assume, for instance, that the standard deviation 

in annual stock returns is 15% and that the average return is 10%. Using the normal 

distribution as the base for probability predictions, this will imply that the stock returns 

will exceed 40% (average plus two standard deviations) only once every 44 years and 

55% only (average plus three standard deviations) once every 740 years. In fact, stock 

returns will be greater than 85% (average plus five standard deviations) only once every 

3.5 million years. In reality, stock returns exceed these values far more frequently, a 

finding consistent with power law distributions, where the probability of larger values 

decline linearly as a function of the power law exponent. As the value gets doubled, the 

probability of its occurrence drops by the square of the exponent. Thus, if the exponent in 

the distribution is 2, the likelihood of returns of 25%, 50% and 100% can be computed as 

follows: 

Returns will exceed 25%: Once every 6 years 

Returns will exceed 50%: Once every 24 years 

Returns will exceed 100%: Once every 96 years 

Note that as the returns get doubled, the likelihood increases four-fold (the square of the 

exponent). As the exponent decreases, the likelihood of larger values increases; an 

exponent between 0 and 2 will yield extreme values more often than a normal 

distribution. An exponent between 1 and 2 yields power law distributions called stable 

Paretian distributions, which have infinite variance. In an early study, Fama18 estimated 

the exponent for stocks to be between 1.7 and 1.9, but subsequent studies have found that 

the exponent is higher in both equity and currency markets.19  

                                                
18 Fama, E.F., 1965, The Behavior of Stock Market Prices, Journal of Business, v38, 34-105. 
19 In a paper in “Nature”, researchers looked at stock prices on 500 stocks between 1929 and 1987and 
concluded that the exponent for stock returns is roughly 3. Gabaix, X., Gopikrishnan, P., Plerou, V. & 
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 In practical terms, the power law proponents argue that using measures such as 

volatility (and its derivatives such as beta) under estimate the risk of large movements. 

The power law exponents for assets, in their view, provide investors with more realistic 

risk measures for these assets. Assets with higher exponents are less risky (since extreme 

values become less common) than asset with lower exponents.  

 Mandelbrot’s challenge to the normal distribution was more than a procedural 

one. Mandelbrot’s world, in contrast to the Gaussian mean-variance one, is one where 

prices move jaggedly over time and look like they have no pattern at a distance, but 

where patterns repeat themselves, when observed closely. In the 1970s, Mandelbrot 

created a branch of mathematics called “fractal geometry” where processes are not 

described by conventional statistical or mathematical measures but by fractals; a fractal is 

a geometric shape that when broken down into smaller parts replicates that shape. To 

illustrate the concept, he uses the example of the coastline that, from a distance, looks 

irregular but up close looks roughly the same – fractal patterns repeat themselves. In 

fractal geometry, higher fractal dimensions translate into more jagged shapes; the rugged 

Cornish Coastline has a fractal dimension of 1.25 whereas the much smoother South 

African coastline has a fractal dimension of 1.02. Using the same reasoning, stock prices 

that look random, when observed at longer time intervals, start revealing self-repeating 

patterns, when observed over shorter time periods. More volatile stocks score higher on 

measures of fractal dimension, thus making it a measure of risk. With fractal geometry, 

Mandelbrot was able to explain not only the higher frequency of price jumps (relative to 

the normal distribution) but also long periods where prices move in the same direction 

and the resulting price bubbles.20 

Asymmetric Distributions 
 Intuitively, it should be downside risk that concerns us and not upside risk. In 

other words, it is not investments that go up significantly that create heartburn and unease 

but investments that go down significantly. The mean-variance framework, by weighting 

                                                                                                                                            
Stanley, H.E., 2003, A theory of power law distributions in financial market fluctuations. Nature 423, 267-
70.  
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both upside volatility and downside movements equally, does not distinguish between the 

two. With a normal or any other symmetric distribution, the distinction between upside 

and downside risk is irrelevant because the risks are equivalent. With asymmetric 

distributions, though, there can be a difference between upside and downside risk. As we 

noted in chapter 3, studies of risk aversion in humans conclude that (a) they are loss 

averse, i.e., they weigh the pain of a loss more than the joy of an equivalent gain and (b) 

they value very large positive payoffs – long shots – far more than they should given the 

likelihood of these payoffs.  

 In practice, return distributions for stocks and most other assets are not 

symmetric. Instead, as shown in figure 4.4, asset returns exhibit fat tails and are more 

likely to have extreme positive values than extreme negative values (simply because 

returns are constrained to be no less than -100%). 

Figure 4.4: Return distributions on Stocks 

Fatter tails: Higher chance of 
extreme values (higher kurtiosis)

More positive outliers than 
negative outliers: positive 
skewness

 
Note that the distribution of stock returns has a higher incidence of extreme returns (fat 

tails or kurtosis) and a tilt towards very large positive returns (positive skewness). Critics 

of the mean variance approach argue that it takes too narrow a view of both rewards and 

risk. In their view, a fuller return measure should consider not just the magnitude of 

                                                                                                                                            
20 Mandelbrot has expanded on his thesis in a book on the topic: Mandelbrot, B. and R.L. Hudson, 2004, 
The (Mis)behavior of Markets: A Fractal View of Risk, Ruin and Reward, Basic Books. 
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expected returns but also the likelihood of very large positive returns or skewness21 and 

more complete risk measure should incorporate both variance and possibility of big 

jumps (co-kurtosis).22 Note that even as these approaches deviate from the mean-variance 

approach in terms of how they define risk, they stay true to the portfolio measure of risk. 

In other words, it is not the possibility of large positive payoffs (skewness) or big jumps 

(kurtosis) that they argue should be considered, but only that portion of the skewness (co-

skewness) and kurtosis (co-kurtosis) that is market related and not diversifiable. 

Jump Process Models 
 The normal, power law and asymmetric distributions that form the basis for the 

models we have discussed in this section are all continuous distributions. Observing the 

reality that stock prices do jump, there are some who have argued for the use of jump 

process distributions to derive risk measures.  

 Press, in one of the earliest papers that attempted to model stock price jumps, 

argued that stock prices follow a combination of a continuous price distribution and a 

Poisson distribution, where prices jump at irregular intervals. The key parameters of the 

Poisson distribution are the expected size of the price jump (µ), the variance in this value 

(δ2) and the likelihood of a price jump in any specified time period (λ) and Press 

estimated these values for ten stocks. In subsequent papers, Beckers and Ball and Torous 

suggest ways of refining these estimates.23 In an attempt to bridge the gap between the 

CAPM and jump process models, Jarrow and Rosenfeld derive a version of the capital 

                                                
21 The earliest paper on this topic was by Kraus, Alan, and Robert H. Litzenberger, 1976, Skewness 
preference and the valuation of risk assets, Journal of Finance 31, 1085-1100. They generated a three-
moment CAPM, with a measure of co-skewness (of the asset with the market) added to capture preferences 
for skewness, and argued that it helped better explain differences across stock returns. In a more recent 
paper, Harvey, C. and Siddique, A. (2000). Conditional skewness in asset pricing tests, Journal of Finance, 
55, 1263-1295, use co-skewness to explain why small companies and low price to book companies earn 
higher returns 
22 Fang, H. and Lai T-Y. (1997). Co-kurtosis and capital asset pricing, The Financial Review, 32, 293-307.  
In this paper, the authors introduce a measure of co-kurtosis (stock price jumps that are correlated with 
market jumps) and argue that it adds to the risk of a stock. 
23 Beckers, S., 1981, A Note on Estimating the Parameters of the Diffusion- Jump Process Model of Stock 
Returns, Journal of Financial and Quantitative Analysis, v16, 127-140; Ball, C.A. and W.N. Torous, 1983, 
A Simplified Jump Process for Common Stock Returns, Journal of Financial and Quantitative Analysis, 
v18, 53-65. 
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asset pricing model that includes a jump component that captures the likelihood of 

market jumps and an individual asset’s correlation with these jumps. 24 

 While jump process models have gained some traction in option pricing, they 

have had limited success in equity markets, largely because the parameters of jump 

process models are difficult to estimate with any degree of precision. Thus, while 

everyone agrees that stock prices jump, there is little consensus on the best way to 

measure how often this happens and whether these jumps are diversifiable and how best 

to incorporate their effect into risk measures. 

Data Power: Arbitrage Pricing and Multi-Factor Models 
 There have been two developments in the last three decades that have changed the 

way we think about risk measurement. The first was access to richer data on stock and 

commodity market information; researchers could not only get information on weekly, 

daily or even intraday prices but also on trading volume and bid-ask spreads. The other 

was the increase in both personal and mainframe computing power, allowing researchers 

to bring powerful statistical tools to bear on the data. As a consequence of these two 

trends, we have seen the advent of risk measures that are based almost entirely on 

observed market prices and financial data. 

Arbitrage Pricing Model 
 The first direct challenge to the capital asset pricing model came in the mid-

seventies, when Steve Ross developed the arbitrage pricing model, using the fundamental 

proposition that two assets with the same exposure to risk had to be priced the same by 

the market to prevent investors from generating risk-free or arbitrage profits.25 In a 

market where arbitrage opportunities did not exist, he argued that you can back out 

measures of risk from observed market returns. Appendix 3 provides a short summary of 

the derivation of the arbitrage pricing model. 

                                                
24 Jarrow, R.A. and E.R. Rosenfeld, 1984, Jump Risks and the Intertemporal Capital Asset Pricing Model, 
Journal of Business, v 57, 337-351. 
25 Ross, Stephen A., 1976, The Arbitrage Theory Of Capital Asset Pricing, Journal of Economic Theory,  
v13(3), 341-360. 
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 The statistical technique that Ross used to extract these risk measures was factor 

analysis. He examined (or rather got a computer to analyze) returns on individual stocks 

over a very long time period and asked a fundamental question: Are there common 

factors that seem to cause large numbers of stock to move together in particular time 

periods? The factor analysis suggested that there were multiple factors affecting overall 

stock prices; these factors were termed market risk factors since they affected many 

stocks at the same time. As a bonus, the factor analysis measured each stock’s exposure 

to each of the multiple factors; these measures were titled factor betas. 

 In the parlance of the capital asset pricing model, the arbitrage pricing model 

replaces the single market risk factor in the CAPM (captured by the market portfolio) 

with multiple market risk factors, and the single market beta in the CAPM (which 

measures risk added by an individual asset to the market portfolio) with multiple factor 

betas (measuring an asset’s exposure to each of the individual market risk factors). More 

importantly, the arbitrage pricing model does not make restrictive assumptions about 

investor utility functions or the return distributions of assets.  The tradeoff, though, is that 

the arbitrage pricing model does depend heavily on historical price data for its estimates 

of both the number of factors and factor betas and is at its core more of a statistical than 

an economic model. 

Multi-factor and Proxy Models 
 While arbitrage pricing models restrict themselves to historical price data, multi-

factor models expand the data used to include macro-economic data in some versions and 

firm-specific data (such as market capitalization and pricing ratios) in others. 

Fundamentally, multi-factor models begin with the assumption that market prices usually 

go up or down for good reason, and that stocks that earn high returns over long periods 

must be riskier than stocks that earn low returns over the same periods. With that 

assumption in place, these models then look for external data that can explain the 

differences in returns across stocks. 

 One class of multi factor models restrict the external data that they use to 

macroeconomic data, arguing that the risk that is priced into stocks should be market risk 

and not firm-specific risk. For instance, Chen, Roll, and Ross suggest that the following 
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macroeconomic variables are highly correlated with the factors that come out of factor 

analysis: the level of industrial production, changes in the default spread (between 

corporate and treasury bonds), shifts in the yield curve (captured by the difference 

between long and short term rates), unanticipated inflation, and changes in the real rate of 

return.26 These variables can then be correlated with returns to come up with a model of 

expected returns, with firm-specific betas calculated relative to each variable. In 

summary, Chen, Roll and Ross found that stock returns were more negative in periods 

when industrial production fell and the default spread, unanticipated inflation and the real 

rate of return increased. Stocks did much better in periods when the yield curve was more 

upward sloping – long term rates were higher than short term rates – and worse in periods 

when the yield curve was flat or downward sloping. With this approach, the measure of 

risk for a stock or asset becomes its exposure to each of these macroeconomic factors 

(captured by the beta relative to each factor). 

 While multi-factor models may stretch the notion of market risk, they remain true 

to its essence by restricting the search to only macro economic variables. A second class 

of models weakens this restriction by widening the search for variables that explain 

differences in stock returns to include firm-specific factors. The most widely cited study 

using this approach was by Fama and French where they presented strong evidence that 

differences in returns across stocks between 1962 and 1990 were best explained not by 

CAPM betas but by two firm-specific measures: the market capitalization of a company 

and its book to price ratio.27 Smaller market cap companies and companies with higher 

book to price ratios generated higher annual returns over this period than larger market 

cap companies with lower book to price ratios. If markets are reasonably efficient in the 

long term, they argued that this must indicate that market capitalization and book to price 

ratios were good stand-ins or proxies for risk measures. In the years since, other factors 

                                                
26 Chen, N., R. Roll and S.A. Ross, 1986, Economic Forces and the Stock Market, Journal of Business, 
1986, v59, 383-404. 
27 Fama, E.F. and K.R. French, 1992, The Cross-Section of Expected Returns, Journal of Finance, v47, 
427-466. There were numerous other studies prior to this one that had the same conclusions as this one but 
their focus was different. These earlier studies uses their findings that low PE, low PBV and small 
companies earned higher returns than expected (based on the CAPM) to conclude that either markets were 
not efficient or that the CAPM did not work. 
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have added to the list of risk proxies – price momentum, price level per share and 

liquidity are a few that come to mind.28 

 Multi-factor and proxy models will do better than conventional asset pricing 

models in explaining differences in returns because the variables chosen in these models 

are those that have the highest correlation with returns. Put another way, researchers can 

search through hundreds of potential proxies and pick the ones that work best. It is 

therefore unfair to argue for these models based purely upon their better explanatory 

power.  

The Evolution of Risk Measures 
 The way in which we measure risk has evolved over time, reflecting in part the 

developments in statistics and economics on the one hand and the availability of data on 

the other. In figure 4.5, we summarize the key developments in the measurement of risk 

and the evolution of risk measures over time: 

                                                
28 Stocks that have gone up strongly in the recent past (his momentum), trade at low prices per share and 
are less liquid earn higher returns than stocks without these characteristics.  
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Figure 4.5: Key Developments in Risk Analysis and Evolution of Risk Measures 

Macroeconomic variables examined as potenntial market risk 
factors, leading the multi-factor model.
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It is worth noting that as new risk measures have evolved, the old ones have not been 

entirely abandoned. Thus, while much of academic research may have jumped on the 
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portfolio theory bandwagon and its subsequent refinements, there are still many investors 

who are more comfortable with subjective judgments about risk or overall risk categories 

(stocks are risky and bonds are not).  

Conclusion 
 To manage risk, we first have to measure it. In this chapter, we look at the 

evolution of risk measures over time. For much of recorded time, human beings 

attributed negative events to fate or divine providence and therefore made little effort to 

measure it quantitatively. After all, if the gods have decided to punish you, no risk 

measurement device or risk management product can protect you from retribution.  

 The first break in this karmic view of risk occurred in the middle ages when 

mathematicians, more in the interests of success at the card tables than in risk 

measurement, came up with the first measures of probability. Subsequent advances in 

statistics – sampling distributions, the law of large numbers and Bayes’ rule, to provide 

three examples – extended the reach of probability into the uncertainties that individuals 

and businesses faced day to day. As a consequence, the insurance business was born, 

where companies offered to protect individuals and businesses from expected losses by 

charging premiums. The key, though, was that risk was still perceived almost entirely in 

terms of potential downside and losses. 

 The growth of markets for financial assets created a need for risk measures that 

captured both the downside risk inherent in these investments as well as the potential for 

upside or profits. The growth of services that provided estimates of these risk measures 

parallels the growth in access to pricing and financial data on investments. The bond 

rating agencies in the early part of the twentieth century provided risk measures for 

corporate bonds. Measures of equity risk appeared at about the same time but were 

primarily centered on price volatility and financial ratios. 

 While the virtues of diversifying across investments had been well publicized at 

the time of his arrival, Markowitz laid the foundation for modern portfolio theory by 

making explicit the benefits of diversification. In the aftermath of his derivation of 

efficient portfolios, i.e. portfolios that maximized expected returns for given variances, 

three classes of models that allowed for more detailed risk measures developed. One class 
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included models like the CAPM that stayed true to the mean variance framework and 

measured risk for any asset as the variance added on to a diversified portfolio. The 

second set of models relaxed the normal distribution assumption inherent in the CAPM 

and allowed for more general distributions (like the power law and asymmetric 

distributions) and the risk measures emanating from these distributions. The third set of 

models trusted the market to get it right, at least on average, and derived risk measures by 

looking at past history. Implicitly, these models assumed that investments that have 

earned high returns in the past must have done so because they were riskier and looked 

for factors that best explain these returns. These factors remained unnamed and were 

statistical in the arbitrage pricing model, were macro economic variables in multi factor 

models and firm-specific measures (like market cap and price to book ratios) in proxy 

models. 
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Appendix 1: Measuring Risk in Portfolios – Financial Review of Reviews – 1909 
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Appendix 2: Mean-Variance Framework and the CAPM 
Consider a portfolio of two assets. Asset A has an expected return of µA and a 

variance in returns of σ2A, while asset B has an expected return of µB and a variance in 

returns of σ2B. The correlation in returns between the two assets, which measures how 

the assets move together, is ρAB. The expected returns and variance of a two-asset 

portfolio can be written as a function of these inputs and the proportion of the portfolio 

going to each asset. 

 µportfolio = wA µA + (1 - wA) µB 

 σ2portfolio = wA2 σ2A + (1 - wA)2 σ2B + 2 wA wB ρΑΒ σA σB 

where 

 wA = Proportion of the portfolio in asset A 

The last term in the variance formulation is sometimes written in terms of the covariance 

in returns between the two assets, which is  

 σAB = ρΑΒ σA σB 

The savings that accrue from diversification are a function of the correlation coefficient. 

Other things remaining equal, the higher the correlation in returns between the two assets, 

the smaller are the potential benefits from diversification. The following example 

illustrates the savings from diversification. 

If there is a diversification benefit of going from one asset to two, as the 

preceding discussion illustrates, there must be a benefit in going from two assets to three, 

and from three assets to more. The variance of a portfolio of three assets can be written as 

a function of the variances of each of the three assets, the portfolio weights on each and 

the correlations between pairs of the assets. It can be written as follows - 

σp
2= wA2 σ2A + wB2 σ2B + wC2 σ2C+ 2 wA wB ρAB σA σB+ 2 wA wC ρAC σA σC+ 2 

wB wC ρBC σB σC 

where 

wA,wB,wC = Portfolio weights on assets 

σ2A ,σ2B ,σ2C = Variances of assets A, B, and C 

ρAB , ρAC , ρBC = Correlation in returns between pairs of assets (A&B, A&C, B&C) 

Note that the number of covariance terms in the variance formulation has increased from 
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one to three. This formulation can be extended to the more general case of a portfolio of n 

assets: 
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The number of terms in this formulation increases exponentially with the number of 

assets in the portfolio, largely because of the number of covariance terms that have to be 

considered. In general, the number of covariance terms can be written as a function of the 

number of assets: 

Number of covariance terms = n (n-1) /2 

where n is the number of assets in the portfolio. Table 4A.1 lists the number of 

covariance terms we would need to estimate the variances of portfolios of different sizes. 

Table 4A.1: Number of Covariance Terms 
Number of Assets Number of Covariance Terms 

2 1 
10 45 
100 4950 

1000 499500 
10000 49995000 

 This formulation can be used to estimate the variance of a portfolio and the effects 

of diversification on that variance. For purposes of simplicity, assume that the average 

asset has a standard deviation in returns of !  and that the average covariance in returns 

between any pair of assets is ! ij . Furthermore, assume that the portfolio is always equally 

weighted across the assets in that portfolio. The variance of a portfolio of n assets can 

then be written as  
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The fact that variances can be estimated for portfolios made up of a large number of 

assets suggests an approach to optimizing portfolio construction, in which investors trade 

off expected return and variance. If an investor can specify the maximum amount of risk 

he is willing to take on (in terms of variance), the task of portfolio optimization becomes 

the maximization of expected returns subject to this level of risk. Alternatively, if an 

investor specifies her desired level of return, the optimum portfolio is the one that 
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minimizes the variance subject to this level of return. These optimization algorithms can 

be written as follows. 

 Return Maximization Risk Minimization 

 Maximize Expected Return  Minimize return variance 
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"  E(Ri ) =  E( ˆ R )  

where, 

 ˆ !  = Investor's desired level of variance 

 E( ˆ R )  = Investor's desired expected returns  

The portfolios that emerge from this process are called Markowitz portfolios. They are 

considered efficient, because they maximize expected returns given the standard 

deviation, and the entire set of portfolios is referred to as the Efficient Frontier. 

Graphically, these portfolios are shown on the expected return/standard deviation 

dimensions in figure 4A.1 - 

Figure 4A.1: Markowitz Portfolios 

Standard Deviation

Efficient Frontier

Each of the points on this

frontier represents an efficient

portfolio, i.e, a portfolio that

has the highest expected return

for a given level of risk.

 
The Markowitz approach to portfolio optimization, while intuitively appealing, suffers 

from two major problems. The first is that it requires a very large number of inputs, since 

the covariances between pairs of assets are required to estimate the variances of 

portfolios. While this may be manageable for small numbers of assets, it becomes less so 

when the entire universe of stocks or all investments is considered. The second problem 
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is that the Markowitz approach ignores a very important asset choice that most investors 

have -- riskless default free government securities -- in coming up with optimum 

portfolios.  

To get from Markowitz portfolios to the capital asset pricing model, let us 

considering adding a riskless asset to the mix of risky assets. By itself, the addition of one 

asset to the investment universe may seem trivial, but the riskless asset has some special 

characteristics that affect optimal portfolio choice for all investors. 

(1) The riskless asset, by definition, has an expected return that will always be equal to 

the actual return. The expected return is known when the investment is made, and the 

actual return should be equal to this expected return; the standard deviation in returns on 

this investment is zero. 

(2) While risky assets’ returns vary, the absence of variance in the riskless asset’s returns 

make it uncorrelated with returns on any of these risky assets. To examine what happens 

to the variance of a portfolio that combines a riskless asset with a risky portfolio, assume 

that the variance of the risky portfolio is σr2 and that wr is the proportion of the overall 

portfolio invested to these risky assets. The balance is invested in a riskless asset, which 

has no variance, and is uncorrelated with the risky asset. The variance of the overall 

portfolio can be written as: 

 σ2portfolio = wr2 σ2r  

 σportfolio = wr σr  

Note that the other two terms in the two-asset variance equation drop out, and the 

standard deviation of the overall portfolio is a linear function of the portfolio invested in 

the risky portfolio. 

 The significance of this result can be illustrated by returning to figure 4A.1 and 

adding the riskless asset to the choices available to the investor. The effect of this 

addition is explored in figure 4A.2. 
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Figure 4A.2: Introducing a Riskless Asset 

 
Consider investor A, whose desired risk level is σA. This investor, instead of choosing 

portfolio A, the Markowitz portfolio containing only risky assets, will choose to invest in 

a combination of the riskless asset and a much riskier portfolio, since he will be able to 

make a much higher return for the same level of risk. The expected return increases as the 

slope of the line drawn from the riskless rate increases, and the slope is maximized when 

the line is tangential to the efficient frontier; the risky portfolio at the point of tangency is 

labeled as risky portfolio M. Thus, investor A’s expected return is maximized by holding 

a combination of the riskless asset and risky portfolio M. Investor B, whose desired risk 

level is σB, which happens to be equal to the standard deviation of the risky portfolio M, 

will choose to invest her entire portfolio in that portfolio. Investor C, whose desired risk 

level is σC, which exceeds the standard deviation of the risky portfolio M, will borrow 

money at the riskless rate and invest in the portfolio M.  

In a world in which investors hold a combination of only two assets -- the riskless 

asset and the market portfolio -- the risk of any individual asset will be measured relative 

to the market portfolio. In particular, the risk of any asset will be the risk it adds on to the 

market portfolio. To arrive at the appropriate measure of this added risk, assume that σ2m 

is the variance of the market portfolio prior to the addition of the new asset, and that the 

variance of the individual asset being added to this portfolio is σ2i. The market value 

portfolio weight on this asset is wi, and the covariance in returns between the individual 
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asset and the market portfolio is σim. The variance of the market portfolio prior to and 

after the addition of the individual asset can then be written as  

Variance prior to asset i being added = σ2m 

Variance after asset i is added = σ2m' = wi2 σ2i + (1 - wi)2 σ2m + 2 wi (1-wi) σim 

The market value weight on any individual asset in the market portfolio should be small 

since the market portfolio includes all traded assets in the economy. Consequently, the 

first term in the equation should approach zero, and the second term should approach 

σ2m, leaving the third term (σim, the covariance) as the measure of the risk added by 

asset i. Dividing this term by the variance of the market portfolio yields the beta of an 

asset: 

Beta of asset = 

! 

" im

" m

2  
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Appendix 3: Derivation of the Arbitrage Pricing Model 

Like the capital asset pricing model, the arbitrage pricing model begins by 

breaking risk down into firm-specific and market risk components. As in the capital asset 

pricing model, firm specific risk covers information that affects primarily the firm 

whereas market risk affects many or all firms. Incorporating both types of risk into a 

return model, we get: 

 R  =  E(R) +  m +  ε 

where R is the actual return, E(R) is the expected return, m is the market-wide component 

of unanticipated risk and ε is the firm-specific component. Thus, the actual return can be 

different from the expected return, either because of market risk or firm-specific actions.  

In general, the market component of unanticipated returns can be decomposed into 

economic factors: 

 R  =  R +  m +  ε 

  = R + (β1 F1 + β2 F2 + .... +βn Fn)  +  ε 

where 

 βj = Sensitivity of investment to unanticipated changes in factor j 

 Fj = Unanticipated changes in factor j 

Note that the measure of an investment’s sensitivity to any macro-economic factor takes 

the form of a beta, called a factor beta. In fact, this beta has many of the same properties 

as the market beta in the CAPM. 

 The arbitrage pricing model assumes that firm-specific risk component (ε) is can 

be diversified away and concludes that the return on a portfolio will not have a firm-

specific component of unanticipated returns. The return on a portfolio can be written as 

the sum of two weighted averages -that of the anticipated returns in the portfolio and that 

of the market factors: 

Rp  = (w1R1+w2R2+...+wnRn)+ (w1β1,1+w2β1,2+...+wnβ1,n) F1 + 

 (w1β2,1+w2β2,2+...+wnβ2,n) F2  ..... 

where, 

 wj = Portfolio weight on asset j 

 Rj = Expected return on asset j 
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 βi,j= Beta on factor i for asset j 

 The final step in this process is estimating an expected return as a function of the 

betas specified above. To do this, we should first note that the beta of a portfolio is the 

weighted average of the betas of the assets in the portfolio. This property, in conjunction 

with the absence of arbitrage, leads to the conclusion that expected returns should be 

linearly related to betas. To see why, assume that there is only one factor and three 

portfolios. Portfolio A has a beta of 2.0 and an expected return on 20%; portfolio B has a 

beta of 1.0 and an expected return of 12%; and portfolio C has a beta of 1.5 and an 

expected return on 14%. Note that the investor can put half of his wealth in portfolio A 

and half in portfolio B and end up with a portfolio with a beta of 1.5 and an expected 

return of 16%. Consequently no investor will choose to hold portfolio C until the prices 

of assets in that portfolio drop and the expected return increases to 16%. By the same 

rationale, the expected returns on every portfolio should be a linear function of the beta. 

If they were not, we could combine two other portfolios, one with a higher beta and one 

with a lower beta, to earn a higher return than the portfolio in question, creating an 

opportunity for arbitrage. This argument can be extended to multiple factors with the 

same results. Therefore, the expected return on an asset can be written as 

 E(R) =  Rf + β1 [E(R1)-Rf] + β2 [E(R2)-Rf]  ...+ βn [E(Rn)-Rf] 

where 

 Rf = Expected return on a zero-beta portfolio 

 E(Rj) = Expected return on a portfolio with a factor beta of 1 for factor j, and zero 

   for all other factors. 

The terms in the brackets can be considered to be risk premiums for each of the factors in 

the model. 

 

 

                                                


