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Implicit in this approach is the assumption that there have been no structural shifts 

in the market that will render the historical data unreliable.  

b. Cross sectional data: In some cases, you may be able to substitute data on 

differences in a specific variable across existing investments that are similar to the 

investment being analyzed. Consider two examples. Assume that you are valuing 

a software firm and are concerned about the uncertainty in operating margins. 

Figure 6.7 provides a distribution of pre-tax operating margins across software 

companies in 2006: 

 
If we use this distribution, we are in effect assuming that the cross sectional 

variation in the margin is a good indicator of the uncertainty we face in estimating 

it for the software firm in question. In a second example, assume that you work 

for Target, the retailer, and that you are trying to estimate the sales per square foot 

for a new store investment. Target could use the distribution on this variable 

across existing stores as the basis for its simulation of sales at the new store. 

c. Statistical Distribution and parameters: For most variables that you are trying 

to forecast, the historical and cross sectional data will be insufficient or unreliable. 
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In these cases, you have to pick a statistical distribution that best captures the 

variability in the input and estimate the parameters for that distribution. Thus, you 

may conclude that operating margins will be distributed uniformly, with a 

minimum of 4% and a maximum of 8% and that revenue growth is normally 

distributed with an expected value of 8% and a standard deviation of 6%. Many 

simulation packages available for personal computers now provide a rich array of 

distributions to choose from, but picking the right distribution and the parameters 

for the distribution remains difficult for two reasons. The first is that few inputs 

that we see in practice meet the stringent requirements that statistical distributions 

demand; revenue growth, for instance, cannot be normally distributed because the 

lowest value it can take on is -100%. Consequently, we have to settle for 

statistical distributions that are close enough to the real distribution that the 

resulting errors will not wreak havoc on our conclusion. The second is that the 

parameters still need to be estimated, once the distribution is picked. For this, we 

can draw on historical or cross sectional data; for the revenue growth input, we 

can look at revenue growth in prior years or revenue growth rate differences 

across peer group companies. The caveats about structural shifts that make 

historical data unreliable and peer group companies not being comparable 

continue to apply.  

The probability distributions for discrete for some inputs and continuous for others, be 

based upon historical data for some and statistical distributions for others. Appendix 1 

provides an overview of the statistical distributions that are most commonly used in 

simulations and their characteristics. 

3. Check for correlation across variables: While it is tempting to jump to running 

simulations right after the distributions have been specified, it is important that we check 

for correlations across variables. Assume, for instance, that you are developing 

probability distributions for both interest rates and inflation. While both inputs may be 

critical in determining value, they are likely to be correlated with each other; high 

inflation is usually accompanied by high interest rates. When there is strong correlation, 

positive or negative, across inputs, you have two choices. One is to pick only one of the 

two inputs to vary; it makes sense to focus on the input that has the bigger impact on 
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value. The other is to build the correlation explicitly into the simulation; this does require 

more sophisticated simulation packages and adds more detail to the estimation process. 

As with the distribution, the correlations can be estimated by looking at the past. 

4. Run the simulation: For the first simulation, you draw one outcome from each 

distribution and compute the value based upon those outcomes. This process can be 

repeated as many times as desired, though the marginal contribution of each simulation 

drops off as the number of simulations increases. The number of simulations you run will 

be determined by the following: 

a. Number of probabilistic inputs: The larger the number of inputs that have 

probability distributions attached to them, the greater will be the required number 

of simulations. 

b. Characteristics of probability distributions: The greater the diversity of 

distributions in an analysis, the larger will be the number of required simulations. 

Thus, the number of required simulations will be smaller in a simulation where all 

of the inputs have normal distributions than in one where some have normal 

distributions, some are based upon historical data distributions and some are 

discrete. 

c.  Range of outcomes: The greater the potential range of outcomes on each input, 

the greater will be the number of simulations.  

Most simulation packages allow users to run thousands of simulations, with little 

or no cost attached to increasing that number. Given that reality, it is better to err 

on the side of too many simulations rather than too few.  

There have generally been two impediments to good simulations. The first is 

informational: estimating distributions of values for each input into a valuation is difficult 

to do. In other words, it is far easier to estimate an expected growth rate of 8% in 

revenues for the next 5 years than it is to specify the distribution of expected growth rates 

– the type of distribution, parameters of that distribution – for revenues. The second is 

computational; until the advent of personal computers, simulations tended to be too time 

and resource intensive for the typical analysis. Both these constraints have eased in recent 

years and simulations have become more feasible. 
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An Example of a Simulation 
 Running a simulation is simplest for firms that consider the same kind of projects 

repeatedly. These firms can use their experience from similar projects that are already in 

operation to estimate expected values for new projects. The Home Depot, for instance, 

analyzes dozens of new home improvement stores every year. It also has hundreds of 

stores in operation10, at different stages in their life cycles; some of these stores have been 

in operation for more than 10 years and others have been around only for a couple of 

years. Thus, when forecasting revenues for a new store, the Home Depot can draw on this 

rich database to make its estimates more precise. The firm has a reasonable idea of how 

long it takes a new store to become established and how store revenues change as the 

store ages and new stores open close by. 

 There are other cases where experience can prove useful for estimating revenues 

and expenses on a new investment. An oil company, in assessing whether to put up an oil 

rig, comes into the decision with a clear sense of what the costs are of putting up a rig, 

and how long it will take for the rig to be productive. Similarly, a pharmaceutical firm, 

when introducing a new drug, can bring to its analysis its experience with other drugs in 

the past, how quickly such drugs are accepted and prescribed by doctors, and how 

responsive revenues are to pricing policy. We are not suggesting that the experience these 

firms have had in analyzing similar projects in the past removes uncertainty about the 

project from the analysis. The Home Depot is still exposed to considerable risk on each 

new store that it analyzes today, but the experience does make the estimation process 

easier and the estimation error smaller than it would be for a firm that is assessing a 

unique project. 

 Assume that the Home Depot is analyzing a new home improvement store that 

will follow its traditional format11. There are several estimates the Home Depot needs to 

make when analyzing a new store. Perhaps the most important is the likely revenues at 

the store. Given that the Home Depot’s store sizes are similar across locations, the firm 

                                                
10 At the end of 2005, the Home Depot had 743 Home Depot stores in operation, 707 of which were in the 
United States. 
11 A typical Home Depot store has store space of about 100,000 square feet and carries a wide range of 
home improvement products, from hardware to flooring. 
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can get an idea of the expected revenues by looking at revenues at their existing stores. 

Figure 6.8 summarizes the distribution12 of annual revenues at existing stores in 2005: 

 

This distribution not only yields an expected revenue per store of about $ 44 million, but 

also provides a measure of the uncertainty associated with the estimate, in the form of a 

standard deviation in revenues per store.  

 The second key input is the operating margin that the Home Depot expects to 

generate at this store. While the margins are fairly similar across all of its existing stores, 

there are significant differences in margins across different building supply retailers, 

reflecting their competitive strengths or weaknesses. Figure 6.9 summarizes differences 

in pre-tax operating margins across building supply retailers: 

                                                
12 This distribution is a hypothetical one, since the Home Depot does not provide this information to 
outsiders. It does have the information internally. 
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Note that this distribution, unlike the revenue distribution, does not have a noticeable 

peak. In fact, with one outlier in either direction, it is distributed evenly between 6% and 

12%. 

 Finally, the store’s future revenues will be tied to an estimate of expected growth, 

which we will assume will be strongly influenced by overall economic growth in the 

United States. To get a measure of this growth, we looked at the distribution of real GDP 

growth from 1925 to 2005 in figure 6.10: 
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 To run a simulation of the Home Depot’s store’s cash flows and value, we will make the 

following assumptions:  

• Base revenues: We will base our estimate of the base year’s revenues on figure 6.8. 

For computational ease, we will assume that revenues will be normally distributed 

with an expected value of $ 44 million and a standard deviation of $ 10 million. 

• Pre-tax operating margin: Based upon figure 6.9, he pre-tax operating margin is 

assumed to be uniformly distributed with a minimum value of 6% and a maximum 

value of 12%, with an expected value of 9%. Non-operating expenses are anticipated 

to be $ 1.5 million a year. 

• Revenue growth: We used a slightly modified version of the actual distribution of 

historical real GDP changes as the distribution of future changes in real GDP.13 The 

average real GDP growth over the period was 3%, but there is substantial variation 

with the worst year delivering a drop in real GDP of more than 8% and the best an 

increase of more than 8%. The expected annual growth rate in revenues is the sum of 
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the expected inflation rate and the growth rate in real GDP. We will assume that the 

expected inflation rate is 2%. 

• The store is expected to generate cash flows for 10 years and there is no expected 

salvage value from the store closure. 

• The cost of capital for the Home Depot is 10% and the tax rate is 40%.  

We can compute the value of this store to the Home Depot, based entirely upon the 

expected values of each variable: 

Expected Base-year Revenue = $ 44 million 

Expected Base-year After-tax Cash flow = (Revenue * Pretax Margin – Nonoperating 

expenses) (1- tax rate ) = (44*.09 – 1.5) (1- .4) = $1.476 million 

Expected growth rate = GDP growth rate + Expected inflation = 3% + 2% = 5% 

Value14 of store = 

! 

=  CF (1+ g)

(1-
(1+ g)n

(1+ r)n
)

(r " g)
 =   1.476 (1.05) 

(1-
1.0510

1.1010
)

(.10" .05)
= $11.53 million  

The risk adjusted value for this store is $11.53 million. 

 We then did a simulation with 10,000 runs, based upon the probability 

distributions for each of the inputs.15 The resulting values are graphed in figure 6.11: 

                                                                                                                                            
13 In the modified version, we smoothed out the distribution to fill in the missing intervals and moved the 
peak of the distribution slightly to the left (to 3-4% from 4-5%) reflecting the larger size of the economy 
today. 
14 The equation presented here is the equation for the present value of a growing annuity.  
15 We used Crystal Ball as the computational program. Crystal Ball is a simulation program produced by 
Decisioneering Inc.) 
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Figure 6.11: Distribution of Estimated Values for HD Store from Simulation 

 
The key statistics on the values obtained across the 10,000 runs are summarized below: 

• The average value across the simulations was  $11.67 million, a trifle higher the 

risk adjusted value of $11.53 million; the median value was $ 10.90 million. 

• There was substantial variation in values, with the lowest value across all runs of - 

$5.05 million and the highest value of $39.42 million; the standard deviation in 

values was $5.96 million. 

Use in decision making 
 A well-done simulation provides us with more than just an expected value for an 

asset or investment.  

a. Better input estimation: In an ideal simulation, analysts will examine both the 

historical and cross sectional data on each input variable before making a 

judgment on what distribution to use and the parameters of the distribution. In the 

process, they may be able to avoid the sloppiness that is associated with the use of 

“single best” estimates; many discounted cash flow valuations are based upon 
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expected growth rates that are obtained from services such Zack’s or IBES, which 

report analysts’ consensus estimates.  

b. It yields a distribution for expected value rather than a point estimate: Consider 

the valuation example that we completed in the last section. In addition to 

reporting an expected value of $11.67 million for the store, we also estimated a 

standard deviation of $5.96 million in that value and a breakdown of the values, 

by percentile. The distribution reinforces the obvious but important point that 

valuation models yield estimates of value for risky assets that are imprecise and 

explains why different analysts valuing the same asset may arrive at different 

estimates of value. 

Note that there are two claims about simulations that we are unwilling to make. The first 

is that simulations yield better estimates of expected value than conventional risk 

adjusted value models. In fact, the expected values from simulations should be fairly 

close to the expected value that we would obtain using the expected values for each of the 

inputs (rather than the entire distribution). The second is that simulations, by providing 

estimates of the expected value and the distribution in that value, lead to better decisions. 

This may not always be the case since the benefits that decision-makers get by getting a 

fuller picture of the uncertainty in value in a risky asset may be more than offset by 

misuse of that risk measure. As we will argue later in this chapter, it is all too common 

for risk to be double counted in simulations and for decisions to be based upon the wrong 

type of risk. 

Simulations with Constraints 
 To use simulations as a tool in risk analysis, we have to introduce a constraint, 

which, if violated, creates very large costs for the firm and perhaps even causes its 

demise. We can then evaluate the effectiveness of risk hedging tools by examining the 

likelihood that the constraint will be violated with each one and weighing that off against 

the cost of the tool. In this section, we will consider some common constraints that are 

introduced into simulations. 
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Book Value Constraints 

 The book value of equity is an accounting construct and, by itself, means little. 

Firms like Microsoft and Google trade at market values that are several times their book 

values. At the other extreme, there are firms that trade at half their book value or less. In 

fact, there are several hundred firms in the United States, some with significant market 

values that have negative book values for equity. There are two types of restrictions on 

book value of equity that may call for risk hedging. 

a. Regulatory Capital Restrictions: Financial service firms such as banks and 

insurance companies are required to maintain book equity as a fraction of loans or 

other assets at or above a floor ratio specified by the authorities. Firms that violate 

these capital constraints can be taken over by the regulatory authorities with the 

equity investors losing everything if that occurs. Not surprisingly, financial 

service firms not only keep a close eye on their book value of equity (and the 

related ratios) but are also conscious of the possibility that the risk in their 

investments or positions can manifest itself as a drop in book equity. In fact, value 

at risk or VAR, which we will examine in the next chapter, represents the efforts 

by financial service firms to understand the potential risks in their investments 

and to be ready for the possibility of a catastrophic outcome, though the 

probability of it occurring might be very small. By simulating the values of their 

investments under a variety of scenarios, they can identify not only the possibility 

of falling below the regulatory ratios but also look for ways of hedging against 

this event occurring. The payoff to risk hedging then manifests itself as a decline 

in or even an elimination of the probability that the firm will violate a regulatory 

constraint. 

b. Negative Book Value for Equity: As noted, there are hundreds of firms in the 

United States with negative book values of equity that survive its occurrence and 

have high market values for equity. There are some countries where a negative 

book value of equity can create substantial costs for the firm and its investors. For 

instance, companies with negative book values of equity in parts of Europe are 

required to raise fresh equity capital to bring their book values above zero. In 

some countries in Asia, companies that have negative book values of equity are 
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barred from paying dividends. Even in the United States, lenders to firms can 

have loan covenants that allow them to gain at least partial control of a firm if its 

book value of equity turns negative. As with regulatory capital restrictions, we 

can use simulations to assess the probability of a negative book value for equity 

and to protect against it. 

Earnings and Cash flow Constraints 

 Earnings and cash flow constraints can be either internally or externally imposed. 

In some firms managers of firms may decide that the consequences of reporting a loss or 

not meeting analysis estimates of earnings are so dire, including perhaps the loss of their 

jobs, that they are willing to expend the resources on risk hedging products to prevent this 

from happening. The payoff from hedging risk then has nothing to do with firm value 

maximization and much to do with managerial compensation and incentives. In other 

firms, the constraints on earnings and cashflows can be externally imposed. For instance, 

loan covenants can be related to earnings outcomes. Not only can the interest rate on the 

loan be tied to whether a company makes money or not, but the control of the firm can 

itself shift to lenders in some cases if the firm loses money. In either case, we can use 

simulations to both assess the likelihood that these constraints will be violated and to 

examine the effect of risk hedging products on this likelihood. 

Market Value Constraints 

 In discounted cash flow valuation, the value of the firm is computed as a going 

concern, by discounting expected cashflows at a risk-adjusted discount rate. Deducting 

debt from this estimate yields equity value. The possibility and potential costs of not 

being able to meet debt payments is considered only peripherally in the discount rate. In 

reality, the costs of not meeting contractual obligations can be substantial. In fact, these 

costs are generally categorized as indirect bankruptcy costs and could include the loss of 

customers, tighter supplier credit and higher employee turnover. The perception that a 

firm is in trouble can lead to further trouble. By allowing us to compare the value of a 

business to its outstanding claims in all possible scenarios (rather than just the most likely 

one), simulations allow us to not only quantify the likelihood of distress but also build in 
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the cost of indirect bankruptcy costs into valuation. In effect, we can explicitly model the 

effect of distress on expected cash flows and discount rates. 

Issues 
 The use of simulations in investment analysis was first suggested in an article by 

David Hertz in the Harvard Business Review.16 He argued that using probability 

distributions for input variables, rather than single best estimates, would yield more 

informative output. In the example that he provided in the paper, he used simulations to 

compare the distributions of returns of two investments; the investment with the higher 

expected return also had a higher chance of losing money (which was viewed as an 

indicator of its riskiness). In the aftermath, there were several analysts who jumped on the 

simulation bandwagon, with mixed results. In recent years, there has been a resurgence in 

interest in simulations as a tool for risk assessment, especially in the context of using  and 

valuing derivatives. There are several key issues, though, that we have to deal with in the 

context of using simulations in risk assessment: 

a. Garbage in, garbage out: For simulations to have value, the distributions chosen for the 

inputs should be based upon analysis and data, rather than guesswork. It is worth noting 

that simulations yield great-looking output, even when the inputs are random. 

Unsuspecting decision makers may therefore be getting meaningless pictures of the risk 

in an investment. It is also worth noting that simulations require more than a passing 

knowledge of statistical distributions and their characteristics; analysts who cannot assess 

the difference between normal and lognormal distributions should not be doing 

simulations. 

b. Real data may not fit distributions: The problem with the real world is that the data 

seldom fits the stringent requirements of statistical distributions. Using probability 

distributions that bear little resemblance to the true distribution underlying an input 

variable will yield misleading results. 

c. Non-stationary distributions: Even when the data fits a statistical distribution or where 

historical data distributions are available, shifts in the market structure can lead to shifts 

                                                
16 Hertz, D., 1964,  Risk Analysis in Capital Investment, Harvard Business Review. 
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in the distributions as well. In some cases, this can change the form of the distribution 

and in other cases, it can change the parameters of the distribution. Thus, the mean and 

variance estimated from historical data for an input that is normally distributed may 

change for the next period. What we would really like to use in simulations, but seldom 

can assess, are forward looking probability distributions. 

d. Changing correlation across inputs: Earlier in this chapter, we noted that correlation 

across input variables can be modeled into simulations. However, this works only if the 

correlations remain stable and predictable. To the extent that correlations between input 

variables change over time, it becomes far more difficult to model them.  

Risk Adjusted Value and Simulations 
In our discussion of decision trees, we referred to the common misconception that 

decision trees are risk adjusted because they consider the likelihood of adverse events. 

The same misconception is prevalent in simulations, where the argument is that the cash 

flows from simulations are somehow risk adjusted because of the use of probability 

distributions and that the riskfree rate should be used in discounting these cash flows. 

With one exception, this argument does not make sense.  Looking across simulations, the 

cash flows that we obtain are expected cash flows and are not risk adjusted. 

Consequently, we should be discounting these cash flows at a risk-adjusted rate. 

 The exception occurs when you use the standard deviation in values from a 

simulation as a measure of investment or asset risk and make decisions based upon that 

measure. In this case, using a risk-adjusted discount rate will result in a double counting 

of risk. Consider a simple example. Assume that you are trying to choose between two 

assets, both of which you have valued using simulations and risk adjusted discount rates. 

Table 6.3 summarizes your findings: 

Table 6.3: Results of Simulation 

  
Asset Risk-adjusted Discount Rate 

Simulation 
Expected Value 

Simulation 
Std deviation 

A 12% $ 100 15% 
B 15% $ 100 21% 
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Note that you view asset B to be riskier and have used a higher discount rate to compute 

value. If you now proceed to reject asset B, because the standard deviation is higher 

across the simulated values, you would be penalizing it twice. You can redo the 

simulations using the riskfree rate as the discount rate for both assets, but a note of 

caution needs to be introduced. If we then base our choice between these assets on the 

standard deviation in simulated values, we are assuming that all risk matters in 

investment choice, rather than only the risk that cannot be diversified away. Put another 

way, we may end up rejecting an asset because it has a high standard deviation in 

simulated values, even though adding that asset to a portfolio may result in little 

additional risk (because much of its risk can be diversified away). 

 This is not to suggest that simulations are not useful to us in understanding risk. 

Looking at the variance of the simulated values around the expected value provides a 

visual reminder that we are estimating value in an uncertain environment. It is also 

conceivable that we can use it as a decision tool in portfolio management in choosing 

between two stocks that are equally undervalued but have different value distributions. 

The stock with the less volatile value distribution may be considered a better investment 

than another stock with a more volatile value distribution. 

An Overall Assessment of Probabilistic Risk Assessment Approaches 
 Now that we have looked at scenario analysis, decision trees and simulations, we 

can consider not only when each one is appropriate but also how these approaches 

complement or replace risk adjusted value approaches.  

Comparing the approaches 
 Assuming that we decide to use a probabilistic approach to assess risk and could 

choose between scenario analysis, decision trees and simulations, which one should we 

pick? The answer will depend upon how you plan to use the output and what types of risk 

you are facing: 

1. Selective versus Full Risk Analysis: In the best-case/worst-case scenario analysis, we 

look at only three scenarios (the best case, the most likely case and the worst case) and 

ignore all other scenarios. Even when we consider multiple scenarios, we will not have a 
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complete assessment of all possible outcomes from risky investments or assets. With 

decision trees and simulations, we attempt to consider all possible outcomes. In decision 

trees, we try to accomplish this by converting continuous risk into a manageable set of 

possible outcomes. With simulations, we use probability distributions to capture all 

possible outcomes. Put in terms of probability, the sum of the probabilities of the 

scenarios we examine in scenario analysis can be less than one, whereas the sum of the 

probabilities of outcomes in decision trees and simulations has to equal one. As a 

consequence, we can compute expected values across outcomes in the latter, using the 

probabilities as weights, and these expected values are comparable to the single estimate 

risk adjusted values that we talked about in the last chapter.  

2. Type of Risk: As noted above, scenario analysis and decision trees are generally built 

around discrete outcomes in risky events whereas simulations are better suited for 

continuous risks. Focusing on just scenario analysis and decision trees, the latter are 

better suited for sequential risks, since risk is considered in phases, whereas the former is 

easier to use when risks occur concurrently.   

3. Correlation across risks: If the various risks that an investment is exposed to are 

correlated, simulations allow for explicitly modeling these correlations (assuming that 

you can estimate and forecast them). In scenario analysis, we can deal with correlations 

subjectively by creating scenarios that allow for them; the high (low) interest rate 

scenario will also include slower (higher) economic growth. Correlated risks are difficult 

to model in decision trees. 

Table 6.4 summarizes the relationship between risk type and the probabilistic approach 

used: 

Table 6.4: Risk Type and Probabilistic Approaches 

Discrete/Continuous Correlated/Independent Sequential/Concurrent Risk 
Approach 

Discrete Independent Sequential Decision 
Tree 

Discrete Correlated Concurrent Scenario 
Analysis 

Continuous Either Either Simulations 
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Finally, the quality of the information will be a factor in your choice of approach. Since 

simulations are heavily dependent upon being able to assess probability distributions and 

parameters, they work best in cases where there is substantial historical and cross 

sectional data available that can be used to make these assessments. With decision trees, 

you need estimates of the probabilities of the outcomes at each chance node, making 

them best suited for risks that can be assessed either using past data or population 

characteristics. Thus, it should come as no surprise that when confronted with new and 

unpredictable risks, analysts continue to fall back on scenario analysis, notwithstanding 

its slapdash and subjective ways of dealing with risk. 

Complement or Replacement for Risk Adjusted Value 
 As we noted in our discussion of both decision trees and simulations, these 

approaches can be used as either complements to or substitutes for risk-adjusted value. 

Scenario analysis, on the other hand, will always be a complement to risk adjusted value, 

since it does not look at the full spectrum of possible outcomes. 

 When any of these approaches are used as complements to risk adjusted value, the 

caveats that we offered earlier in the chapter continue to apply and bear repeating. All of 

these approaches use expected rather than risk adjusted cash flows and the discount rate 

that is used should be a risk-adjusted discount rate; the riskfree rate cannot be used to 

discount expected cash flows. In all three approaches, though, we still preserve the 

flexibility to change the risk adjusted discount rate for different outcomes. Since all of 

these approaches will also provide a range for estimated value and a measure of 

variability (in terms of value at the end nodes in a decision tree or as a standard deviation 

in value in a simulation), it is important that we do not double count for risk. In other 

words, it is patently unfair to risky investments to discount their cash flows back at a risk-

adjusted rate (in simulations and decision trees) and to then reject them because the 

variability in value is high.  

 Both simulations and decision trees can be used as alternatives to risk adjusted 

valuation, but there are constraints on the process. The first is that the cash flows will be 

discounted back at a riskfree rate to arrive at value. The second is that we now use the 

measure of variability in values that we obtain in both these approaches as a measure of 
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risk in the investment. Comparing two assets with the same expected value (obtained 

with riskless rates as discount rates) from a simulation, we will pick the one with the 

lower variability in simulated values as the better investment. If we do this, we are 

assuming that all of the risks that we have built into the simulation are relevant for the 

investment decision. In effect, we are ignoring the line drawn between risks that could 

have been diversified away in a portfolio and asset-specific risk on which much of 

modern finance is built. For an investor considering investing all of his or her wealth in 

one asset, this should be reasonable. For a portfolio manager comparing two risky stocks 

that he or she is considering adding to a diversified portfolio or for a publicly traded 

company evaluating two projects, it can yield misleading results; the rejected stock or 

project with the higher variance in simulated values may be uncorrelated with the other 

investments in the portfolio and thus have little marginal risk. 

In practice 
 The use of probabilistic approaches has become more common with the surge in 

data availability and computing power. It is not uncommon now to see a capital 

budgeting analysis, with a twenty to thirty additional scenarios, or a Monte Carlo 

simulation attached to an equity valuation. In fact, the ease with which simulations can be 

implemented has allowed its use in a variety of new markets.  

• Deregulated electricity markets: As electricity markets have been deregulated around 

the world, companies involved in the business of buying and selling electricity have 

begun using simulation models to quantify the swings in demand and supply of 

power, and the resulting price volatility. The results have been used to determine how 

much should be spent on building new power plants and how best to use the excess 

capacity in these plants. 

• Commodity companies: Companies in commodity businesses – oil and precious 

metals, for instance – have used probabilistic approaches to examine how much they 

should bid for new sources for these commodities, rather than relying on a single best 

estimate of the future price. Analysts valuing these companies have also taken to 

modeling the value of these companies as a function of the price of the underlying 

commodity. 
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• Technology companies: Shifts in technology can be devastating for businesses that 

end up on the wrong side of the shift. Simulations and scenario analyses have been 

used to model the effects on revenues and earnings of the entry and diffusion of new 

technologies. 

As we will see in the next chapter, simulations are a key components of Value at Risk 

and other risk management tools used, especially in firms that have to deal with risk in 

financial assets.  

Conclusion 
 Estimating the risk adjusted value for a risky asset or investment may seem like 

an exercise in futility. After all, the value is a function of the assumptions that we make 

about how the risk will unfold in the future. With probabilistic approaches to risk 

assessment, we estimate not only an expected value but also get a sense of the range of 

possible outcomes for value, across good and bad scenarios.  

• In the most extreme form of scenario analysis, you look at the value in the best 

case and worst case scenarios and contrast them with the expected value. In its 

more general form, you estimate the value under a small number of likely 

scenarios, ranging from optimistic to pessimistic.  

• Decision trees are designed for sequential and discrete risks, where the risk in an 

investment is considered into phases and the risk in each phase is captured in the 

possible outcomes and the probabilities that they will occur. A decision tree 

provides a complete assessment of risk and can be used to determine the optimal 

courses of action at each phase and an expected value for an asset today. 

• Simulations provide the most complete assessments of risk since they are based 

upon probability distributions for each input (rather than a single expected value 

or just discrete outcomes). The output from a simulation takes the form of an 

expected value across simulations and a distribution for the simulated values. 

With all three approaches, the keys are to avoid double counting risk (by using a risk-

adjusted discount rate and considering the variability in estimated value as a risk 

measure) or making decisions based upon the wrong types of risk. 
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Appendix 6.1: Statistical Distributions 
 Every statistics book provides a listing of statistical distributions, with their 

properties, but browsing through these choices can be frustrating to anyone without a 

statistical background, for two reasons. First, the choices seem endless, with dozens of 

distributions competing for your attention, with little or no intuitive basis for 

differentiating between them. Second, the descriptions tend to be abstract and emphasize 

statistical properties such as the moments, characteristic functions and cumulative 

distributions. In this appendix, we will focus on the aspects of distributions that are most 

useful when analyzing raw data and trying to fit the right distribution to that data. 

Fitting the Distribution 
 When confronted with data that needs to be characterized by a distribution, it is 

best to start with the raw data and answer four basic questions about the data that can 

help in the characterization. The first relates to whether the data can take on only discrete 

values or whether the data is continuous; whether a new pharmaceutical drug gets FDA 

approval or not is a discrete value but the revenues from the drug represent a continuous 

variable. The second looks at the symmetry of the data and if there is asymmetry, which 

direction it lies in; in other words, are positive and negative outliers equally likely or is 

one more likely than the other. The third question is whether there are upper or lower 

limits on the data;; there are some data items like revenues that cannot be lower than zero 

whereas there are others like operating margins that cannot exceed a value (100%). The 

final and related question relates to the likelihood of observing extreme values in the 

distribution; in some data, the extreme values occur very infrequently whereas in others, 

they occur more often. 

Is the data discrete or continuous? 

 The first and most obvious categorization of data should be on whether the data is 

restricted to taking on only discrete values or if it is continuous. Consider the inputs into 

a typical project analysis at a firm. Most estimates that go into the analysis come from 

distributions that are continuous; market size, market share and profit margins, for 

instance, are all continuous variables. There are some important risk factors, though, that 
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can take on only discrete forms, including regulatory actions and the threat of a terrorist 

attack; in the first case, the regulatory authority may dispense one of two or more 

decisions which are specified up front and in the latter, you are subjected to a terrorist 

attack or you are not.  

 With discrete data, the entire distribution can either be developed from scratch or 

the data can be fitted to a pre-specified discrete distribution. With the former, there are 

two steps to building the distribution. The first is identifying the possible outcomes and 

the second is to estimate probabilities to each outcome. As we noted in the text, we can 

draw on historical data or experience as well as specific knowledge about the investment 

being analyzed to arrive at the final distribution.  This process is relatively simple to 

accomplish when there are a few outcomes with a well-established basis for estimating 

probabilities but becomes more tedious as the number of outcomes increases. If it is 

difficult or impossible to build up a customized distribution, it may still be possible fit the 

data to one of the following discrete distributions: 

a. Binomial distribution: The binomial distribution measures the probabilities of the 

number of successes over a given number of trials with a specified probability of 

success in each try. In the simplest scenario of a coin toss (with a fair coin), where the 

probability of getting a head with each toss is 0.50 and there are a hundred trials, the 

binomial distribution will measure the likelihood of getting anywhere from no heads 

in a hundred tosses (very unlikely) to 50 heads (the most likely) to 100 heads (also 

very unlikely). The binomial distribution in this case will be symmetric, reflecting the 

even odds; as the probabilities shift from even odds, the distribution will get more 

skewed. Figure 6A.1 presents binomial distributions for three scenarios – two with 

50% probability of success and one with a 70% probability of success and different 

trial sizes. 



 45 

Figure 6A.1: Binomial Distribution 

 
As the probability of success is varied (from 50%) the distribution will also shift its 

shape, becoming positively skewed for probabilities less than 50% and negatively 

skewed for probabilities greater than 50%.17 

b. Poisson distribution: The Poisson distribution measures the likelihood of a number of 

events occurring within a given time interval, where the key parameter that is 

required is the average number of events in the given interval (λ). The resulting 

distribution looks similar to the binomial, with the skewness being positive but 

decreasing with λ.  Figure 6A.2 presents three Poisson distributions, with λ ranging 

from 1 to 10. 

                                                
17 As the number of trials increases and the probability of success is close to 0.5, the binomial distribution 
converges on the normal distribution. 
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Figure 6A.2: Poisson Distribution 

 
c. Negative Binomial distribution: Returning again to the coin toss example, assume that 

you hold the number of successes fixed at a given number and estimate the number of 

tries you will have before you reach the specified number of successes. The resulting 

distribution is called the negative binomial and it very closely resembles the Poisson. 

In fact, the negative binomial distribution converges on the Poisson distribution, but 

will be more skewed to the right (positive values) than the Poisson distribution with 

similar parameters. 

d. Geometric distribution: Consider again the coin toss example used to illustrate the 

binomial. Rather than focus on the number of successes in n trials, assume that you 

were measuring the likelihood of when the first success will occur. For instance, with 

a fair coin toss, there is a 50% chance that the first success will occur at the first try, a 

25% chance that it will occur on the second try and a 12.5% chance that it will occur 

on the third try. The resulting distribution is positively skewed and looks as follows 

for three different probability scenarios (in figure 6A.3): 
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Figure 6A.3: Geometric Distribution 

 
Note that the distribution is steepest with high probabilities of success and flattens out 

as the probability decreases. However, the distribution is always positively skewed. 

e. Hypergeometric distribution: The hypergeometric distribution measures the 

probability of a specified number of successes in n trials, without replacement, from a 

finite population. Since the sampling is without replacement, the probabilities can 

change as a function of previous draws. Consider, for instance, the possibility of 

getting four face cards in hand of ten, over repeated draws from a pack. Since there 

are 16 face cards and the total pack contains 52 cards, the probability of getting four 

face cards in a hand of ten can be estimated. Figure 6A.4 provides a graph of the 

hypergeometric distribution: 
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Figure 6A.4: Hypergeometric Distribution 

 
Note that the hypergeometric distribution converges on binomial distribution as the as 

the population size increases. 

f. Discrete uniform distribution: This is the simplest of discrete distributions and applies 

when all of the outcomes have an equal probability of occurring.  Figure 6A.5 

presents a uniform discrete distribution with five possible outcomes, each occurring 

20% of the time: 
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Figure 6A.5: Discrete Uniform Distribution 

 
The discrete uniform distribution is best reserved for circumstances where there are 

multiple possible outcomes, but no information that would allow us to expect that one 

outcome is more likely than the others. 

With continuous data, we cannot specify all possible outcomes, since they are too 

numerous to list, but we have two choices. The first is to convert the continuous data into 

a discrete form and then go through the same process that we went through for discrete 

distributions of estimating probabilities. For instance, we could take a variable such as 

market share and break it down into discrete blocks – market share between 3% and 

3.5%, between 3.5% and 4% and so on – and consider the likelihood that we will fall into 

each block. The second is to find a continuous distribution that best fits the data and to 

specify the parameters of the distribution. The rest of the appendix will focus on how to 

make these choices. 

How symmetric is the data? 

There are some datasets that exhibit symmetry, i.e., the upside is mirrored by the 

downside. The symmetric distribution that most practitioners have familiarity with is the 

normal distribution, sown in Figure 6A.6, for a range of parameters: 
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Figure 6A.6: Normal Distribution 

 
The normal distribution has several features that make it popular. First, it can be fully 

characterized by just two parameters – the mean and the standard deviation – and thus 

reduces estimation pain. Second, the probability of any value occurring can be obtained 

simply by knowing how many standard deviations separate the value from the mean; the 

probability that a value will fall 2 standard deviations from the mean is roughly 95%.   

The normal distribution is best suited for data that, at the minimum, meets the following 

conditions: 

a. There is a strong tendency for the data to take on a central value. 

b. Positive and negative deviations from this central value are equally likely 

c. The frequency of the deviations falls off rapidly as we move further away from 

the central value. 

The last two conditions show up when we compute the parameters of the normal 

distribution: the symmetry of deviations leads to zero skewness and the low probabilities 

of large deviations from the central value reveal themselves in no kurtosis. 

There is a cost we pay, though, when we use a normal distribution to characterize 

data that is non-normal since the probability estimates that we obtain will be misleading 

and can do more harm than good. One obvious problem is when the data is asymmetric 

but another potential problem is when the probabilities of large deviations from the 
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central value do not drop off as precipitously as required by the normal distribution. In 

statistical language, the actual distribution of the data has fatter tails than the normal. 

While all of symmetric distributions in the family are like the normal in terms of the 

upside mirroring the downside, they vary in terms of shape, with some distributions 

having fatter tails than the normal and the others more accentuated peaks.  These 

distributions are characterized as leptokurtic and you can consider two examples. One is 

the logistic distribution, which has longer tails and a higher kurtosis (1.2, as compared to 

0 for the normal distribution) and the other are Cauchy distributions, which also exhibit 

symmetry and higher kurtosis and are characterized by a scale variable that determines 

how fat the tails are. Figure 6A.7 present a series of Cauchy distributions that exhibit the 

bias towards fatter tails or more outliers than the normal distribution. 

Figure 6A.7: Cauchy Distribution 

 
Either the logistic or the Cauchy distributions can be used if the data is symmetric but 

with extreme values that occur more frequently than you would expect with a normal 

distribution. 

As the probabilities of extreme values increases relative to the central value, the 

distribution will flatten out. At its limit, assuming that the data stays symmetric and we 

put limits on the extreme values on both sides, we end up with the uniform distribution, 

shown in figure 6A.8: 
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Figure 6A.8: Uniform Distribution 

 
When is it appropriate to assume a uniform distribution for a variable? One possible 

scenario is when you have a measure of the highest and lowest values that a data item can 

take but no real information about where within this range the value may fall. In other 

words, any value within that range is just as likely as any other value.  

Most data does not exhibit symmetry and instead skews towards either very large 

positive or very large negative values. If the data is positively skewed, one common 

choice is the lognormal distribution, which is typically characterized by three parameters: 

a shape (σ or sigma), a scale (µ or median) and a shift parameter (

! 

" ). When m=0 and 

! 

"=1, you have the standard lognormal distribution and when 

! 

"=0, the distribution 

requires only scale and sigma parameters. As the sigma rises, the peak of the distribution 

shifts to the left and the skewness in the distribution increases. Figure 6A.9 graphs 

lognormal distributions for a range of parameters: 
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Figure 6A.9: Lognormal distribution 

 
The Gamma and Weibull distributions are two distributions that are closely related to the 

lognormal distribution; like the lognormal distribution, changing the parameter levels 

(shape, shift and scale) can cause the distributions to change shape and become more or 

less skewed. In all of these functions, increasing the shape parameter will push the 

distribution towards the left. In fact, at high values of sigma, the left tail disappears 

entirely and the outliers are all positive. In this form, these distributions all resemble the 

exponential, characterized by a location (m) and scale parameter (b), as is clear from 

figure 6A.10. 
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Figure 6A.10: Weibull Distribution 

 
The question of which of these distributions will best fit the data will depend in large part 

on how severe the asymmetry in the data is. For moderate positive skewness, where there 

are both positive and negative outliers, but the former and larger and more common, the 

standard lognormal distribution will usually suffice. As the skewness becomes more 

severe, you may need to shift to a three-parameter lognormal distribution or a Weibull 

distribution, and modify the shape parameter till it fits the data. At the extreme, if there 

are no negative outliers and the only positive outliers in the data, you should consider the 

exponential function, shown in Figure 6a.11: 
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Figure 6A.11: Exponential Distribution 

 
 If the data exhibits negative slewness, the choices of distributions are more 

limited. One possibility is the Beta distribution, which has two shape parameters (p and 

q) and upper and lower bounds on the data (a and b). Altering these parameters can yield 

distributions that exhibit either positive or negative skewness, as shown in figure 6A.12: 

Figure 6A.12: Beta Distribution 
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Another is an extreme value distribution, which can also be altered to generate both 

positive and negative skewness, depending upon whether the extreme outcomes are the 

maximum (positive) or minimum (negative) values (see Figure 6A.13) 

Figure 6A.13: Extreme Value Distributions 

 

Are there upper or lower limits on data values? 

 There are often natural limits on the values that data can take on. As we noted 

earlier, the revenues and the market value of a firm cannot be negative and the profit 

margin cannot exceed 100%. Using a distribution that does not constrain the values to 

these limits can create problems. For instance, using a normal distribution to describe 

profit margins can sometimes result in profit margins that exceed 100%, since the 

distribution has no limits on either the downside or the upside. 

 When data is constrained, the questions that needs to be answered are whether the 

constraints apply on one side of the distribution or both, and if so, what the limits on 

values are. Once these questions have been answered, there are two choices. One is to 

find a continuous distribution that conforms to these constraints. For instance, the 

lognormal distribution can be used to model data, such as revenues and stock prices that 

are constrained to be never less than zero. For data that have both upper and lower limits, 

you could use the uniform distribution, if the probabilities of the outcomes are even 

across outcomes or a triangular distribution (if the data is clustered around a central 

value). Figure 6A.14 presents a triangular distribution: 
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Figure 6A.14: Triangular Distribution 

 
An alternative approach is to use a continuous distribution that normally allows data to 

take on any value and to put upper and lower limits on the values that the data can 

assume. Note that the cost of putting these constrains is small in distributions like the 

normal where the probabilities of extreme values is very small, but increases as the 

distribution exhibits fatter tails. 

How likely are you to see extreme values of data, relative to the middle values? 

 As we noted in the earlier section, a key consideration in what distribution to use 

to describe the data is the likelihood of extreme values for the data, relative to the middle 

value. In the case of the normal distribution, this likelihood is small and it increases as 

you move to the logistic and Cauchy distributions. While it may often be more realistic to 

use the latter to describe real world data, the benefits of a better distribution fit have to be 

weighed off against the ease with which parameters can be estimated from the normal 

distribution. Consequently, it may make sense to stay with the normal distribution for 

symmetric data, unless the likelihood of extreme values increases above a threshold. 

 The same considerations apply for skewed distributions, though the concern will 

generally be more acute for the skewed side of the distribution. In other words, with 

positively skewed distribution, the question of which distribution to use will depend upon 



 58 

how much more likely large positive values are than large negative values, with the fit 

ranging from the lognormal to the exponential.  

 In summary, the question of which distribution best fits data cannot be answered 

without looking at whether the data is discrete or continuous, symmetric or asymmetric 

and where the outliers lie. Figure 6A.15 summarizes the choices in a chart. 

Tests for Fit 
 The simplest test for distributional fit is visual with a comparison of the histogram 

of the actual data to the fitted distribution. Consider figure 6A.16, where we report the 

distribution of current price earnings ratios for US stocks in early 2007, with a normal 

distribution superimposed on it.  

Figure 6A.16: Current PE Ratios for US Stocks – January 2007 
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The distributions are so clearly divergent that the normal distribution assumption does not 

hold up.  
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 A slightly more sophisticated test is to compute the moments of the actual data 

distribution – the mean, the standard deviation, skewness and kurtosis – and to examine 

them for fit to the chosen distribution. With the price-earnings data above, for instance, 

the moments of the distribution and key statistics are summarized  in table 6A.1: 

Table 6A.1: Current PE Ratio for US stocks – Key Statistics 

 Current PE Normal Distribution 
Mean 28.947  
Median 20.952 Median = Mean 
Standard deviation 26.924  
Skewness 3.106 0 
Kurtosis 11.936 0 

Since the normal distribution has no skewness and zero kurtosis, we can easily reject the 

hypothesis that price earnings ratios are normally distributed.   

The typical tests for goodness of fit compare the actual distribution function of the 

data with the cumulative distribution function of the distribution that is being used to 

characterize the data, to either accept the hypothesis that the chosen distribution fits the 

data or to reject it. Not surprisingly, given its constant use, there are more tests for 

normality than for any other distribution. The Kolmogorov-Smirnov test is one of the 

oldest tests of fit for distributions18, dating back to 1967. Improved versions of the tests 

include the Shapiro-Wilk and Anderson-Darling tests. Applying these tests to the current 

PE ratio yields the unsurprising result that the hypothesis that current PE ratios are drawn 

from a normal distribution is roundly rejected: 

Tests of Normality 
Tests of  Normality

.204 4269 .000 .671 4269 .000Current PE

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

 
There are graphical tests of normality, where probability plots can be used to assess the 

hypothesis that the data is drawn from a normal distribution. Figure 6A.17 illustrates this, 

using current PE ratios as the data set. 

                                                
18 The Kolgomorov-Smirnov test can be used to see if the data fits a normal, lognormal, Weibull, 
exponential or logistic distribution. 
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Normal Q-Q Plot of Current PE
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Given that the normal distribution is one of easiest to work with, it is useful to begin by 

testing data for non-normality to see if you can get away with using the normal 

distribution. If not, you can extend your search to other and more complex distributions.  

Conclusion 
 Raw data is almost never as well behaved as we would like it to be. Consequently, 

fitting a statistical distribution to data is part art and part science, requiring compromises 

along the way. The key to good data analysis is maintaining a balance between getting a 

good distributional fit and preserving ease of estimation, keeping in mind that the 

ultimate objective is that the analysis should lead to better decision. In particular, you 

may decide to settle for a distribution that less completely fits the data over one that more 

completely fits it, simply because estimating the parameters may be easier to do with the 

former. This may explain the overwhelming dependence on the normal distribution in 

practice, notwithstanding the fact that most data do not meet the criteria needed for the 

distribution to fit.  
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Figure 6A.15: Distributional Choices 

 

                                                




