ESTIMATING GROWTH

Growth can be good, bad or neutral...
The Value of Growth

- When valuing a company, it is easy to get caught up in the details of estimating growth and start viewing growth as a “good”, i.e., that higher growth translates into higher value.

- Growth, though, is a double-edged sword.
 - The good side of growth is that it pushes up revenues and operating income, perhaps at different rates (depending on how margins evolve over time).
 - The bad side of growth is that you have to set aside money to reinvest to create that growth.
 - The net effect of growth is whether the good outweighs the bad.
Ways of Estimating Growth in Earnings

- Look at the past
 - The historical growth in earnings per share is usually a good starting point for growth estimation

- Look at what others are estimating
 - Analysts estimate growth in earnings per share for many firms. It is useful to know what their estimates are.

- Look at fundamentals
 - Ultimately, all growth in earnings can be traced to two fundamentals - how much the firm is investing in new projects, and what returns these projects are making for the firm.
Growth I

Historical Growth
Historical Growth

- Historical growth rates can be estimated in a number of different ways
 - Arithmetic versus Geometric Averages
 - Simple versus Regression Models
- Historical growth rates can be sensitive to
 - The period used in the estimation (starting and ending points)
 - The metric that the growth is estimated in..
- In using historical growth rates, you have to wrestle with the following:
 - How to deal with negative earnings
 - The effects of scaling up
Motorola: Arithmetic versus Geometric Growth Rates

<table>
<thead>
<tr>
<th></th>
<th>Revenues</th>
<th>% Change</th>
<th>EBITDA</th>
<th>% Change</th>
<th>EBIT</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>$ 22,245</td>
<td></td>
<td>$ 4,151</td>
<td></td>
<td>$ 2,604</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>$ 27,037</td>
<td>21.54%</td>
<td>$ 4,850</td>
<td>16.84%</td>
<td>$ 2,931</td>
<td>12.56%</td>
</tr>
<tr>
<td>1996</td>
<td>$ 27,973</td>
<td>3.46%</td>
<td>$ 4,268</td>
<td>-12.00%</td>
<td>$ 1,960</td>
<td>-33.13%</td>
</tr>
<tr>
<td>1997</td>
<td>$ 29,794</td>
<td>6.51%</td>
<td>$ 4,276</td>
<td>0.19%</td>
<td>$ 1,947</td>
<td>-0.66%</td>
</tr>
<tr>
<td>1998</td>
<td>$ 29,398</td>
<td>-1.33%</td>
<td>$ 3,019</td>
<td>-29.40%</td>
<td>$ 822</td>
<td>-57.78%</td>
</tr>
<tr>
<td>1999</td>
<td>$ 30,931</td>
<td>5.21%</td>
<td>$ 5,398</td>
<td>78.80%</td>
<td>$ 3,216</td>
<td>291.24%</td>
</tr>
<tr>
<td>Arithmetic Average</td>
<td>7.08%</td>
<td>10.89%</td>
<td>42.45%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Average</td>
<td>6.82%</td>
<td>5.39%</td>
<td>4.31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>8.61%</td>
<td>41.56%</td>
<td>141.78%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You are trying to estimate the growth rate in earnings per share at Time Warner from 1996 to 1997. In 1996, the earnings per share was a deficit of $0.05. In 1997, the expected earnings per share is $0.25. What is the growth rate?

a. -600%
b. +600%
c. +120%
d. Cannot be estimated
Dealing with Negative Earnings

- When the earnings in the starting period are negative, the growth rate cannot be estimated.
 \[
 \frac{0.30}{-0.05} = -600\%
 \]

- There are three solutions:
 - Use the higher of the two numbers as the denominator
 \[
 \frac{0.30}{0.25} = 120\%
 \]
 - Use the absolute value of earnings in the starting period as the denominator
 \[
 \frac{0.30}{0.05} = 600\%
 \]
 - Use a linear regression model and divide the coefficient by the average earnings.

- When earnings are negative, the growth rate is meaningless. Thus, while the growth rate can be estimated, it does not tell you much about the future.
The Effect of Size on Growth: Callaway Golf

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Profit</th>
<th>Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>6.40</td>
<td>255.56%</td>
</tr>
<tr>
<td>1992</td>
<td>19.30</td>
<td>201.56%</td>
</tr>
<tr>
<td>1993</td>
<td>41.20</td>
<td>113.47%</td>
</tr>
<tr>
<td>1994</td>
<td>78.00</td>
<td>89.32%</td>
</tr>
<tr>
<td>1995</td>
<td>97.70</td>
<td>25.26%</td>
</tr>
<tr>
<td>1996</td>
<td>122.30</td>
<td>25.18%</td>
</tr>
</tbody>
</table>

- Geometric Average Growth Rate = 102%
Extrapolation and its Dangers

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>$ 122.30</td>
</tr>
<tr>
<td>1997</td>
<td>$ 247.05</td>
</tr>
<tr>
<td>1998</td>
<td>$ 499.03</td>
</tr>
<tr>
<td>1999</td>
<td>$ 1,008.05</td>
</tr>
<tr>
<td>2000</td>
<td>$ 2,036.25</td>
</tr>
<tr>
<td>2001</td>
<td>$ 4,113.23</td>
</tr>
</tbody>
</table>

If net profit continues to grow at the same rate as it has in the past 6 years, the expected net income in 5 years will be $ 4.113 billion.
While the job of an analyst is to find under and over valued stocks in the sectors that they follow, a significant proportion of an analyst’s time (outside of selling) is spent forecasting earnings per share.

- Most of this time, in turn, is spent forecasting earnings per share in the next earnings report
- While many analysts forecast expected growth in earnings per share over the next 5 years, the analysis and information (generally) that goes into this estimate is far more limited.

- Analyst forecasts of earnings per share and expected growth are widely disseminated by services such as Zacks and IBES, at least for U.S companies.
How good are analysts at forecasting growth?

- Analysts forecasts of EPS tend to be closer to the actual EPS than simple time series models, but the differences tend to be small.

<table>
<thead>
<tr>
<th>Study</th>
<th>Group tested</th>
<th>Analyst Error</th>
<th>Time Series Model Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins & Hopwood Value Line</td>
<td>31.7%</td>
<td>34.1%</td>
<td></td>
</tr>
<tr>
<td>Brown & Rozeff Value Line</td>
<td>28.4%</td>
<td>32.2%</td>
<td></td>
</tr>
<tr>
<td>Fried & Givoly Earnings</td>
<td>16.4%</td>
<td>19.8%</td>
<td></td>
</tr>
</tbody>
</table>

- The advantage that analysts have over time series models:
 - tends to decrease with the forecast period (next quarter versus 5 years)
 - tends to be greater for larger firms than for smaller firms
 - tends to be greater at the industry level than at the company level

- Forecasts of growth (and revisions thereof) tend to be highly correlated across analysts.
Are some analysts more equal than others?

- A study of All-America Analysts (chosen by Institutional Investor) found that
 - There is no evidence that analysts who are chosen for the All-America Analyst team were chosen because they were better forecasters of earnings. (Their median forecast error in the quarter prior to being chosen was 30%; the median forecast error of other analysts was 28%)
 - However, in the calendar year following being chosen as All-America analysts, these analysts become slightly better forecasters than their less fortunate brethren. (The median forecast error for All-America analysts is 2% lower than the median forecast error for other analysts)
 - Earnings revisions made by All-America analysts tend to have a much greater impact on the stock price than revisions from other analysts
 - The recommendations made by the All America analysts have a greater impact on stock prices (3% on buys; 4.7% on sells). For these recommendations the price changes are sustained, and they continue to rise in the following period (2.4% for buys; 13.8% for the sells).
The Five Deadly Sins of an Analyst

- **Tunnel Vision:** Becoming so focused on the sector and valuations within the sector that you lose sight of the bigger picture.

- **Lemmingitis:** Strong urge felt to change recommendations & revise earnings estimates when other analysts do the same.

- **Stockholm Syndrome:** Refers to analysts who start identifying with the managers of the firms that they are supposed to follow.

- **Factophobia** (generally is coupled with delusions of being a famous story teller): Tendency to base a recommendation on a “story” coupled with a refusal to face the facts.

- **Dr. Jekyll/Mr. Hyde:** Analyst who thinks his primary job is to bring in investment banking business to the firm.
Propositions about Analyst Growth Rates

- **Proposition 1**: There is far less private information and far more public information in most analyst forecasts than is generally claimed.

- **Proposition 2**: The biggest source of private information for analysts remains the company itself which might explain
 - why there are more buy recommendations than sell recommendations (information bias and the need to preserve sources)
 - why there is such a high correlation across analysts forecasts and revisions
 - why All-America analysts become better forecasters than other analysts after they are chosen to be part of the team.

- **Proposition 3**: There is value to knowing what analysts are forecasting as earnings growth for a firm. There is, however, danger when they agree too much (lemmingitis) and when they agree to little (in which case the information that they have is so noisy as to be useless).
It’s all in the fundamentals
Fundamental Growth Rates

<table>
<thead>
<tr>
<th>Investment in Existing Projects</th>
<th>×</th>
<th>Current Return on Investment on Projects 12%</th>
<th>=</th>
<th>Current Earnings $120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment in New Projects $100</td>
<td>×</td>
<td>Next Period’s Return on Investment 12% +</td>
<td>=</td>
<td>Next Period’s Earnings 132</td>
</tr>
<tr>
<td>Investment in Existing Projects</td>
<td>×</td>
<td>Change in ROI from current to next period: 0% +</td>
<td>=</td>
<td>Change in Earnings $12</td>
</tr>
<tr>
<td>Investment in New Projects $100</td>
<td>×</td>
<td>Return on Investment on New Projects 12%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aswath Damodaran
Growth Rate Derivations

In the special case where ROI on existing projects remains unchanged and is equal to the ROI on new projects:

<table>
<thead>
<tr>
<th>Investment in New Projects</th>
<th>Return on Investment</th>
<th>Change in Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$120</td>
<td>$12</td>
</tr>
<tr>
<td>120</td>
<td>12%</td>
<td>$120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reinvestment Rate</th>
<th>Return on Investment</th>
<th>Growth Rate in Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.33%</td>
<td>12%</td>
<td>10%</td>
</tr>
</tbody>
</table>

In the more general case where ROI can change from period to period, this can be expanded as follows:

\[
\text{Investment in Existing Projects} \times (\text{Change in ROI}) + \text{New Projects (ROI)} = \frac{\text{Change in Earnings}}{\text{Current Earnings}}
\]

\[
\text{Investment in Existing Projects} \times \text{Current ROI} = \frac{\text{Change in Earnings}}{\text{Current Earnings}}
\]

For instance, if the ROI increases from 12% to 13%, the expected growth rate can be written as follows:

\[
83.33% \times 12% = 10%
\]

\[
\frac{\$1,000 \times (.13 - .12) + 100 \times (13\%)}{\$1000 \times .12} = \frac{\$23}{\$120} = 19.17\%
\]

Aswath Damodaran
Estimating Fundamental Growth from new investments: Three variations

<table>
<thead>
<tr>
<th>Earnings Measure</th>
<th>Reinvestment Measure</th>
<th>Return Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings per share</td>
<td>Retention Ratio = % of net income retained by the company = 1 – Payout ratio</td>
<td>Return on Equity = Net Income/ Book Value of Equity</td>
</tr>
<tr>
<td>Net Income from non-cash assets</td>
<td>Equity reinvestment Rate = (Net Cap Ex + Change in non-cash WC – Change in Debt)/ (Net Income)</td>
<td>Non-cash ROE = Net Income from non-cash assets/ (Book value of equity – Cash)</td>
</tr>
<tr>
<td>Operating Income</td>
<td>Reinvestment Rate = (Net Cap Ex + Change in non-cash WC)/ After-tax Operating Income</td>
<td>Return on Capital or ROIC = After-tax Operating Income/ (Book value of equity + Book value of debt – Cash)</td>
</tr>
</tbody>
</table>
I. Expected Long Term Growth in EPS

- When looking at growth in earnings per share, these inputs can be cast as follows:
 - Reinvestment Rate = Retained Earnings/ Current Earnings = Retention Ratio
 - Return on Investment = ROE = Net Income/Book Value of Equity

- In the special case where the current ROE is expected to remain unchanged

 \[g_{\text{EPS}} = \frac{\text{Retained Earnings}_{t-1}}{\text{NI}_{t-1}} \times \text{ROE} \]
 \[= \text{Retention Ratio} \times \text{ROE} \]
 \[= b \times \text{ROE} \]

- Proposition 1: The expected growth rate in earnings for a company cannot exceed its return on equity in the long term.

- Return on equity (based on 2008 earnings) = 17.56%
- Retention Ratio (based on 2008 earnings and dividends) = 45.37%
- Expected growth rate in earnings per share for Wells Fargo, if it can maintain these numbers.

 Expected Growth Rate = 0.4537 \times 17.56\% = 7.97\%
Assume now that the banking crisis of 2008 will have an impact on the capital ratios and profitability of banks. In particular, you can expect that the book capital (equity) needed by banks to do business will increase 30%, starting now.

Assuming that Wells continues with its existing businesses, estimate the expected growth rate in earnings per share for the future.

New Return on Equity =

Expected growth rate =
One way to pump up ROE: Use more debt

\[
\text{ROE} = \text{ROC} + \frac{D/E}{(\text{ROC} - i (1-t))}
\]

where,

\[
\text{ROC} = \frac{\text{EBIT}_t (1 - \text{tax rate})}{\text{Book value of Capital}_{t-1}}
\]

\[
D/E = \frac{\text{BV of Debt}}{\text{BV of Equity}}
\]

\[
i = \frac{\text{Interest Expense on Debt}}{\text{BV of Debt}}
\]

\[
t = \text{Tax rate on ordinary income}
\]

Note that Book value of capital = Book Value of Debt + Book value of Equity - Cash.
Decomposing ROE: Brahma in 1998

- Brahma (now Ambev) had an extremely high return on equity, partly because it borrowed money at a rate well below its return on capital
 - Return on Capital = 19.91%
 - Debt/Equity Ratio = 77%
 - After-tax Cost of Debt = 5.61%
 - Return on Equity = ROC + D/E (ROC - i(1-t))
 \[= 19.91\% + 0.77 (19.91\% - 5.61\%) = 30.92\% \]

- This seems like an easy way to deliver higher growth in earnings per share. What (if any) is the downside?
Decomposing ROE: Titan Watches (India) in 2000

- Return on Capital = 9.54%
- Debt/Equity Ratio = 191% (book value terms)
- After-tax Cost of Debt = 10.125%
- Return on Equity = ROC + D/E (ROC - i(1-t))
 = 9.54% + 1.91 (9.54% - 10.125%) = 8.42%

Aswath Damodaran
II. Expected Growth in Net Income from non-cash assets

- The limitation of the EPS fundamental growth equation is that it focuses on per share earnings and assumes that reinvested earnings are invested in projects earning the return on equity. To the extent that companies retain money in cash balances, the effect on net income can be muted.

- A more general version of expected growth in earnings can be obtained by substituting in the equity reinvestment into real investments (net capital expenditures and working capital) and modifying the return on equity definition to exclude cash:
 - Net Income from non-cash assets = Net income – Interest income from cash (1 - t)
 - Equity Reinvestment Rate = (Net Capital Expenditures + Change in Working Capital) (1 - Debt Ratio)/ Net Income from non-cash assets
 - Non-cash ROE = Net Income from non-cash assets/ (BV of Equity – Cash)
 - Expected Growth_{Net Income} = Equity Reinvestment Rate * Non-cash ROE
Estimating expected growth in net income from non-cash assets: Coca Cola in 2010

- In 2010, Coca Cola reported net income of $11,809 million. It had a total book value of equity of $25,346 million at the end of 2009.
- Coca Cola had a cash balance of $7,021 million at the end of 2009, on which it earned income of $105 million in 2010.
- Coca Cola had capital expenditures of $2,215 million, depreciation of $1,443 million and reported an increase in working capital of $335 million. Coca Cola’s total debt increased by $150 million during 2010.

 - Equity Reinvestment = 2215 - 1443 + 335 - 150 = $957 million
 - Non-cash Net Income = $11,809 - $105 = $11,704 million
 - Non-cash book equity = $25,346 - $7021 = $18,325 million
 - Reinvestment Rate = $957 million / $11,704 million = 8.18%
 - Non-cash ROE = $11,704 million / $18,325 million = 63.87%
 - Expected growth rate = 8.18% * 63.87% = 5.22%
III. Expected Growth in EBIT And Fundamentals: Stable ROC and Reinvestment Rate

- When looking at growth in operating income, the definitions are:
 - Reinvestment Rate = \(\frac{(\text{Net Capital Expenditures} + \text{Change in WC})}{\text{EBIT}(1-t)} \)
 - Return on Investment = ROC = \(\frac{\text{EBIT}(1-t)}{(\text{BV of Debt} + \text{BV of Equity}) - \text{Cash}} \)

- Reinvestment Rate and Return on Capital
 Expected Growth rate in Operating Income
 \[= \frac{(\text{Net Capital Expenditures} + \text{Change in WC})}{\text{EBIT}(1-t)} \times \text{ROC} \]
 \[= \text{Reinvestment Rate} \times \text{ROC} \]

- Proposition: The net capital expenditure needs of a firm, for a given growth rate, should be inversely proportional to the quality of its investments.
Estimating Growth in Operating Income, if fundamentals stay unchanged

Cisco’s Fundamentals
- Reinvestment Rate = 106.81%
- Return on Capital = 34.07%
- Expected Growth in EBIT = (1.0681)(0.3407) = 36.39%

Motorola’s Fundamentals
- Reinvestment Rate = 52.99%
- Return on Capital = 12.18%
- Expected Growth in EBIT = (0.5299)(0.1218) = 6.45%

Cisco’s expected growth rate is clearly much higher than Motorola’s sustainable growth rate. As a potential investor in Cisco, what would worry you the most about this forecast?

a. That Cisco’s return on capital may be overstated (why?)
b. That Cisco’s reinvestment comes mostly from acquisitions (why?)
c. That Cisco is getting bigger as a firm (why?)
d. That Cisco is viewed as a star (why?)
e. All of the above
The Magical Number: ROIC (or any accounting return) and its limits

Accounting Issues
Operating income can be skewed by accounting misclassification (leases and R&D) and by unusual expenses/income.

Computed as operating income in most recent 12 months, net of the effective tax rate paid during those 12 months.

Life Cycle Effect
Current earnings are not indicative of long term earnings potential for young & infrastructure firms.

Return on Invested Capital

Abnormal earnings
Last 12 months might have been unusually good or bad

Accounting Write offs
Writing off mistakes can reduce invested capital & make it look better than it should.

Accounting misclassification
When capital expenses (R&D) and financial expenses (leases) are miscategorized as operating expenses, invested capital will be understated.

After-tax Operating Income

Capital Invested in existing assets

Invested Capital = Book value of equity + Book value of debt - Cash & Cross holdings

This is your proxy for returns made on existing assets and for continuing returns from those assets

Inflation
If asset book value is not adjusted for inflation, capital invested in older assets will be understated.
IV. Operating Income Growth when Return on Capital is Changing

- When the return on capital is changing, there will be a second component to growth, positive if the return on capital is increasing and negative if the return on capital is decreasing.

- If ROC\(_t\) is the return on capital in period \(t\) and ROC\(_{t+1}\) is the return on capital in period \(t+1\), the expected growth rate in operating income will be:

 \[
 \text{Expected Growth Rate} = \text{ROC}_{t+1} \times \text{Reinvestment rate} + \frac{(\text{ROC}_{t+1} - \text{ROC}_t)}{\text{ROC}_t}
 \]

- If the change is over multiple periods, the second component should be spread out over each period.
Motorola’s Growth Rate

- Motorola’s current return on capital is 12.18% and its reinvestment rate is 52.99%.
- We expect Motorola’s return on capital to rise to 17.22% over the next 5 years (which is half way towards the industry average)

\[
\text{Expected Growth Rate} = \text{ROC}_{\text{Current}} \times \text{Reinvestment Rate}_{\text{Current}} + \left\{ \left[1 + \left(\frac{\text{ROC}_{\text{In 5 years}} - \text{ROC}_{\text{Current}}}{\text{ROC}_{\text{Current}}} \right) \right]^{1/5} - 1 \right\}
\]

\[
= 0.1722 \times 0.5299 + \left\{ \left[1 + \left(\frac{0.1722 - 0.1218}{0.1218} \right) \right]^{1/5} - 1 \right\}
\]

\[
= 0.1629 \text{ or } 16.29\%
\]

- One way to think about this is to decompose Motorola’s expected growth into:
 - Growth from new investments: \(0.1722 \times 0.5299 = 9.12\%\)
 - Growth from more efficiently using existing investments: \(16.29\% - 9.12\% = 7.17\%\)

Note that I am assuming that the new investments start making 17.22% immediately, while allowing for existing assets to improve returns gradually.
The Value of Growth

Expected growth = Growth from new investments + Efficiency growth
= Reinv Rate * ROC + (ROC_{t}-ROC_{t-1})/ROC_{t-1}

Assume that your cost of capital is 10%. As an investor, rank these firms in the order of most value growth to least value growth.
Growth IV

Top Down Growth
Estimating Growth when Operating Income is Negative or Margins are changing

- All of the fundamental growth equations assume that the firm has a return on equity or return on capital it can sustain in the long term.
- When operating income is negative or margins are expected to change over time, we use a three step process to estimate growth:
 - Estimate growth rates in revenues over time
 - Determine the total market (given your business model) and estimate the market share that you think your company will earn.
 - Decrease the growth rate as the firm becomes larger
 - Keep track of absolute revenues to make sure that the growth is feasible
 - Estimate expected operating margins each year
 - Set a target margin that the firm will move towards
 - Adjust the current margin towards the target margin
 - Estimate the capital that needs to be invested to generate revenue growth and expected margins
 - Estimate a sales to capital ratio that you will use to generate reinvestment needs each year.
Tesla in July 2015: Growth and Profitability

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenues</th>
<th>Revenue Growth</th>
<th>Operating Income</th>
<th>Operating Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year</td>
<td>$2,013.50</td>
<td></td>
<td>$(21.81)</td>
<td>-1.08%</td>
</tr>
<tr>
<td>1</td>
<td>$3,322.28</td>
<td>65.00%</td>
<td>$7.48</td>
<td>0.23%</td>
</tr>
<tr>
<td>2</td>
<td>$5,481.75</td>
<td>65.00%</td>
<td>$84.06</td>
<td>1.53%</td>
</tr>
<tr>
<td>3</td>
<td>$9,044.89</td>
<td>65.00%</td>
<td>$257.03</td>
<td>2.84%</td>
</tr>
<tr>
<td>4</td>
<td>$14,924.07</td>
<td>65.00%</td>
<td>$619.36</td>
<td>4.15%</td>
</tr>
<tr>
<td>5</td>
<td>$24,624.72</td>
<td>65.00%</td>
<td>$1,344.12</td>
<td>5.46%</td>
</tr>
<tr>
<td>6</td>
<td>$37,565.02</td>
<td>52.55%</td>
<td>$2,541.92</td>
<td>6.77%</td>
</tr>
<tr>
<td>7</td>
<td>$52,628.59</td>
<td>40.10%</td>
<td>$4,249.78</td>
<td>8.08%</td>
</tr>
<tr>
<td>8</td>
<td>$67,180.39</td>
<td>27.65%</td>
<td>$6,303.78</td>
<td>9.38%</td>
</tr>
<tr>
<td>9</td>
<td>$77,391.81</td>
<td>15.20%</td>
<td>$8,274.48</td>
<td>10.69%</td>
</tr>
<tr>
<td>10</td>
<td>$79,520.08</td>
<td>2.75%</td>
<td>$9,542.41</td>
<td>12.00%</td>
</tr>
</tbody>
</table>

Revenues in year 10 reflect successful "high end auto" company revenues (Volvo, Audi, BMW etc.)

Pre-tax operating margin in year 10 is at the 75th percentile of high end auto companies.

Aswath Damodaran
Tesla: Reinvestment and Profitability

Aswath Damodaran

Sales/Capital

Sales/Capital measures revenues generated for every dollar of investment.

Reinvestment

Reinvestment = Change in Revenue / Sales to capital

Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenues</th>
<th>EBIT</th>
<th>EBIT (1-t)</th>
<th>Change in Revenues</th>
<th>Sales/Capital</th>
<th>Reinvestment</th>
<th>FCFF</th>
<th>Invested Capital</th>
<th>ROIC</th>
<th>Cost of Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>$2,013.50</td>
<td>$(21.81)</td>
<td>$(21.81)</td>
<td>$1,308.78</td>
<td>1.55</td>
<td>$844.37</td>
<td>$(836.89)</td>
<td>$1,045.00</td>
<td>-2.09%</td>
<td>8.74%</td>
</tr>
<tr>
<td>1</td>
<td>$3,322.28</td>
<td>$7.48</td>
<td>$7.48</td>
<td>$1,308.78</td>
<td>1.55</td>
<td>$1,393.21</td>
<td>$(1,309.15)</td>
<td>$3,282.58</td>
<td>2.56%</td>
<td>8.74%</td>
</tr>
<tr>
<td>2</td>
<td>$5,481.75</td>
<td>$84.06</td>
<td>$84.06</td>
<td>$2,159.48</td>
<td>1.55</td>
<td>$2,298.80</td>
<td>$(2,044.36)</td>
<td>$5,581.38</td>
<td>4.56%</td>
<td>8.74%</td>
</tr>
<tr>
<td>3</td>
<td>$9,044.89</td>
<td>$257.03</td>
<td>$254.44</td>
<td>$3,563.14</td>
<td>1.55</td>
<td>$3,793.02</td>
<td>$(3,390.44)</td>
<td>$9,374.40</td>
<td>4.29%</td>
<td>8.74%</td>
</tr>
<tr>
<td>4</td>
<td>$14,924.07</td>
<td>$619.36</td>
<td>$402.58</td>
<td>$5,879.18</td>
<td>1.55</td>
<td>$6,258.48</td>
<td>$(5,384.81)</td>
<td>$15,632.89</td>
<td>5.59%</td>
<td>8.59%</td>
</tr>
<tr>
<td>5</td>
<td>$24,624.72</td>
<td>$1,344.12</td>
<td>$873.68</td>
<td>$9,700.65</td>
<td>1.55</td>
<td>$8,348.58</td>
<td>$(6,696.33)</td>
<td>$23,981.46</td>
<td>6.89%</td>
<td>8.44%</td>
</tr>
<tr>
<td>6</td>
<td>$37,565.02</td>
<td>$2,541.92</td>
<td>$1,652.25</td>
<td>$12,940.29</td>
<td>1.55</td>
<td>$9,718.43</td>
<td>$(6,956.08)</td>
<td>$33,699.89</td>
<td>8.20%</td>
<td>8.29%</td>
</tr>
<tr>
<td>7</td>
<td>$52,628.59</td>
<td>$4,249.78</td>
<td>$2,762.36</td>
<td>$15,063.57</td>
<td>1.55</td>
<td>$9,388.26</td>
<td>$(5,290.81)</td>
<td>$43,088.15</td>
<td>9.51%</td>
<td>8.15%</td>
</tr>
<tr>
<td>8</td>
<td>$67,180.39</td>
<td>$6,303.78</td>
<td>$4,097.46</td>
<td>$14,551.80</td>
<td>1.55</td>
<td>$6,588.01</td>
<td>$(1,209.60)</td>
<td>$49,676.17</td>
<td>10.83%</td>
<td>8.00%</td>
</tr>
<tr>
<td>9</td>
<td>$77,391.81</td>
<td>$8,274.48</td>
<td>$5,378.41</td>
<td>$10,211.42</td>
<td>1.55</td>
<td>$1,373.08</td>
<td>$4,829.49</td>
<td>$51,049.25</td>
<td>12.15%</td>
<td>8.00%</td>
</tr>
<tr>
<td>10</td>
<td>$79,520.08</td>
<td>$9,542.41</td>
<td>$6,202.57</td>
<td>$2,128.27</td>
<td>1.55</td>
<td>$1,373.08</td>
<td>$4,829.49</td>
<td>$51,049.25</td>
<td>12.15%</td>
<td>8.00%</td>
</tr>
</tbody>
</table>

Tesla Story: Tesla will be able to grow efficiently (sales to capital ratio) and continue to generate excess returns as it gets bigger.

Invested Capital in year t = Invested Capital in year t-1 + Reinvestment in year t

Cost of capital decreases as company gets larger and more profitable.
Expected Growth Rate

Equity Earnings

Analysts
Fundamentals
Historical

Operating Income

Fundamentals
Historical

Stable ROC
Changing ROC

Stable ROE
Changing ROE

Earnings per share

Net Income

Earnings per share

Net Income

Stable ROE
Changing ROE

Stable ROE
Changing ROE

ROE * Retention Ratio
ROE_{t+1} * Retention Ratio + (ROE_{t+1} - ROE_t)/ROE_t

ROE * Equity Reinvestment Ratio
ROE_{t+1} * Eq. Reinv Ratio + (ROE_{t+1} - ROE_t)/ROE_t

ROC * Reinvestment Rate
ROC_{t+1} * Reinvestment Rate + (ROC_{t+1} - ROC_t)/ROC_t

1. Revenue Growth
2. Operating Margins
3. Reinvestment Needs