SESSION 4: DATA DISTRIBUTIONS

Session 4 Accounting & Statistics

Data Distributions: Why they matter!

- While data descriptive statistics provide you with useful information about location, dispersion and symmetry in your data, data distributions provide the same information in fuller and usually visual form.
 - In its simplest and least complicated form, data (in either discrete or continuous form) can be converted into a histogram or a bar chart.
 - That histogram/chart provides the same information that data descriptive statistics provide
- When the distributions approach or resemble classic statistical distributions, you gain the benefit of being able to draw on their established distributional properties to extrapolate from the data.

Histogram: Visualizing Data

Statistical Distributions

- While histograms summarize data in visual form, there is an advantage to replacing them with one of many standardized statistical distributions (normal, exponential, uniform etc.).
 - You have to find a distribution that best fits your data in terms of symmetry, skewness and tails.
 - The benefit of using a standardized distribution is that you can draw on their established distributional properties to extrapolate from the data or to make probabilistic statements relating to the data.

The Normal Distribution

And its properties...

- Dispersion: The standard deviation in a normal distribution measures the spread around the mean, but with links to probabilities of a number occurring in the sample falling within or out of that spread.
- Skewness: A normal distribution is symmetric and has no skewness.
- Kurtosis: A variable that is normally distributed can take on values from minus infinity to plus infinity, but the likelihood of extreme values is constrained. <u>The kurtosis</u> for a normal distribution is three, which becomes the standard against which other distributions are measured.

A Close Relative: The t distribution

A more distant relative: The (Symmetric) Triangular Distribution

A Uniform Distribution

Negative Skew: Minimum Extreme Value

Positive Skew: Log Normal Distribution

Thin tails and Fat tails...

Measured with kurtosis...

- Kurtosis is a measure of the combined weights of the tails, relative to the rest of the distribution.
- Most often, kurtosis is measured against the normal distribution. Pearson's kurtosis is the excess kurtosis over three
 - If the Pearson kurtosis is close to 0, then a normal distribution is often assumed. These are called mesokurtic distributions.
 - If the Pearson kurtosis is less than 0, then the distribution has thin tails and is called a platykurtic distribution. (Uniform distribution is a good example)
 - If the Pearson kurtosis is greater than 0, then the distribution has fat tails and is called a leptokurtic distribution.

